CONTENTS

Board of Trustees ... 11
Officers of Administration .. 13
 Administrative Officers in the University 13
 Board of Direction of Agricultural Experiment Station 14
Faculty .. 15
State Laboratory of Natural History 21
Agricultural Experiment Station ... 21
Location ... 23
History ... 23
Buildings and Grounds .. 26
Art Gallery .. 28
Library .. 29
Laboratories .. 30
 Science ... 30
 Engineering ... 30
 Special Research .. 30
Collections .. 31
 Agricultural ... 31
 Botanical ... 31
 Engineering ... 31
 Geological .. 32
 Zoological .. 33
The Museum ... 34
Admission ... 35
 By Certificate from Accredited Schools 35
 By Examination .. 35
 Subjects for Examination ... 36
 Program of Examinations for fall of 1896 40
 By Transfer of Credits from Other Universities 41
 As Special Students .. 41
 To Advanced Standing .. 42
Registration .. 42
Examinations .. 42
CONTENTS

<table>
<thead>
<tr>
<th>Terms and Vacations</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduation</td>
<td>43</td>
</tr>
<tr>
<td>Administration of the University</td>
<td>44</td>
</tr>
<tr>
<td>Government</td>
<td>44</td>
</tr>
<tr>
<td>Organization</td>
<td>44</td>
</tr>
<tr>
<td>College of Literature and Arts</td>
<td>45</td>
</tr>
<tr>
<td>College of Engineering</td>
<td>45</td>
</tr>
<tr>
<td>College of Science</td>
<td>45</td>
</tr>
<tr>
<td>College of Agriculture</td>
<td>45</td>
</tr>
<tr>
<td>Graduate School</td>
<td>46</td>
</tr>
<tr>
<td>School of Pharmacy</td>
<td>46</td>
</tr>
<tr>
<td>College of Literature and Arts</td>
<td>47</td>
</tr>
<tr>
<td>Faculty</td>
<td>47</td>
</tr>
<tr>
<td>Aims and Scope</td>
<td>48</td>
</tr>
<tr>
<td>General Course System</td>
<td>49</td>
</tr>
<tr>
<td>Specialized Course, or Group, System</td>
<td>49</td>
</tr>
<tr>
<td>Classification of Subjects</td>
<td>50</td>
</tr>
<tr>
<td>Prescribed</td>
<td>50</td>
</tr>
<tr>
<td>Elective</td>
<td>51</td>
</tr>
<tr>
<td>Requirements for Graduation</td>
<td>52</td>
</tr>
<tr>
<td>Under the General Course System</td>
<td>52</td>
</tr>
<tr>
<td>Under the Specialized Course System</td>
<td>52</td>
</tr>
<tr>
<td>In Music</td>
<td>53</td>
</tr>
<tr>
<td>Courses of Instruction by years and terms</td>
<td>53</td>
</tr>
<tr>
<td>Description of Departments</td>
<td>54</td>
</tr>
<tr>
<td>Art and Design</td>
<td>54</td>
</tr>
<tr>
<td>Economics</td>
<td>55</td>
</tr>
<tr>
<td>English</td>
<td>55</td>
</tr>
<tr>
<td>French (See Romance Languages)</td>
<td>61</td>
</tr>
<tr>
<td>German</td>
<td>55</td>
</tr>
<tr>
<td>Greek</td>
<td>56</td>
</tr>
<tr>
<td>History</td>
<td>56</td>
</tr>
<tr>
<td>Italian (See Romance Languages)</td>
<td>61</td>
</tr>
<tr>
<td>Latin</td>
<td>57</td>
</tr>
<tr>
<td>Mathematics</td>
<td>58</td>
</tr>
<tr>
<td>Military</td>
<td>58</td>
</tr>
<tr>
<td>Music</td>
<td>58</td>
</tr>
<tr>
<td>Pedagogy</td>
<td>59</td>
</tr>
<tr>
<td>Philosophy</td>
<td>59</td>
</tr>
<tr>
<td>Physical Culture for Women</td>
<td>59</td>
</tr>
<tr>
<td>Political Science</td>
<td>60</td>
</tr>
</tbody>
</table>
CONTENTS

College of Literature and Arts—Continued.

Psychology ... 61
Rhetoric ... 61
Romance Languages and Literatures 61
Sociology (See Economics) ... 62
Spanish (See Romance Languages) 61

College of Engineering .. 63
Faculty ... 63
Aims and Scope .. 64
Methods of Instruction .. 65
Equipment .. 65
Description of Departments .. 66
Architecture ... 66
Instruction .. 66
Equipment ... 67
Course of Instruction .. 67
Architectural Engineering .. 69
Course of Instruction .. 69
Civil Engineering ... 70
Instruction ... 70
Equipment .. 71
Course of Instruction .. 71
Electrical Engineering .. 72
Instruction ... 72
Equipment .. 73
Course of Instruction .. 74
Mechanical Engineering ... 75
Instruction ... 75
Equipment .. 75
Course of Instruction .. 77
Municipal and Sanitary Engineering 78
Instruction ... 79
Course of Instruction .. 79
Physics ... 80
Instruction ... 80
Equipment .. 81
Theoretical and Applied Mechanics 82
Instruction ... 82
Equipment .. 82
College of Science ... 83
Faculty ... 88
College of Science—Continued.

Aims and Scope .. 84
Equipment .. 85
The Chemical Group .. 86
Aims ... 86
Equipment .. 86
Classification of Subjects ... 87
Requirements for Graduation ... 89
Courses of Instruction by years and terms ... 89
Applied Chemistry and Engineering .. 90
 Requirements for Graduation ... 90
 Course of Instruction .. 91
Pharmacy .. 92
 Instruction ... 92
 Equipment .. 92
 Requirements for Graduation ... 93
 Courses of Instruction by years and terms ... 93
 Short Course in Pharmacy ... 94
Description of Departments ... 95
 Chemistry .. 95
 Applied Chemistry ... 96
 Pharmacy .. 96
The Mathematical Group .. 97
 Instruction .. 97
 Classification of Subjects ... 98
 Requirements for Graduation ... 99
 Courses of Instruction by years and terms ... 99
The Natural Science Group ... 101
 Aims .. 101
 Classification of Subjects ... 101
 Requirements for Graduation ... 103
 Courses of Instruction by years and terms ... 103
 Suggestions as to Choice of Courses ... 105
 Special Courses Preliminary to Medicine ... 106
Description of Departments ... 107
 Botany ... 107
 Equipment ... 107
 Geology and Mineralogy ... 108
 Equipment ... 108
 Physiology .. 109
 Equipment ... 110
CONTENTS

College of Science—Continued.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoology</td>
<td>111</td>
</tr>
<tr>
<td>Equipment</td>
<td>112</td>
</tr>
<tr>
<td>The Philosophical Group</td>
<td>113</td>
</tr>
<tr>
<td>Aims</td>
<td>113</td>
</tr>
<tr>
<td>Classification of Subjects</td>
<td>113</td>
</tr>
<tr>
<td>Requirements for Graduation</td>
<td>114</td>
</tr>
<tr>
<td>Description of Departments</td>
<td>114</td>
</tr>
<tr>
<td>Economics</td>
<td>114</td>
</tr>
<tr>
<td>Pedagogy</td>
<td>115</td>
</tr>
<tr>
<td>Philosophy</td>
<td>115</td>
</tr>
<tr>
<td>Political Science</td>
<td>115</td>
</tr>
<tr>
<td>Psychology</td>
<td>115</td>
</tr>
</tbody>
</table>

College of Agriculture

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>117</td>
</tr>
<tr>
<td>Aims and Scope</td>
<td>118</td>
</tr>
<tr>
<td>Methods of Instruction</td>
<td>118</td>
</tr>
<tr>
<td>Equipment</td>
<td>119</td>
</tr>
<tr>
<td>Classification of Subjects</td>
<td>120</td>
</tr>
<tr>
<td>Requirements for Graduation</td>
<td>121</td>
</tr>
<tr>
<td>Courses of Instruction by years and terms</td>
<td>121</td>
</tr>
<tr>
<td>Winter School in Agriculture</td>
<td>122</td>
</tr>
</tbody>
</table>

Graduate School

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aims</td>
<td>123</td>
</tr>
<tr>
<td>Organization</td>
<td>123</td>
</tr>
<tr>
<td>Admission and Registration</td>
<td>123</td>
</tr>
<tr>
<td>Studies and Examinations</td>
<td>123</td>
</tr>
<tr>
<td>Degrees and Fellowships</td>
<td>126</td>
</tr>
<tr>
<td>Courses of Instruction</td>
<td>129</td>
</tr>
</tbody>
</table>

School of Pharmacy

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Courses</td>
<td>129–216</td>
</tr>
<tr>
<td>Choice of Studies</td>
<td>129</td>
</tr>
<tr>
<td>Degrees</td>
<td>216</td>
</tr>
<tr>
<td>Bachelors’</td>
<td>216</td>
</tr>
<tr>
<td>Advanced</td>
<td>217</td>
</tr>
<tr>
<td>Second</td>
<td>217</td>
</tr>
<tr>
<td>Doctors’</td>
<td>218</td>
</tr>
<tr>
<td>Fellowships</td>
<td>219</td>
</tr>
<tr>
<td>Scholarships</td>
<td>220</td>
</tr>
<tr>
<td>State</td>
<td>220</td>
</tr>
<tr>
<td>Military</td>
<td>222</td>
</tr>
<tr>
<td>Contents</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Prizes</td>
<td>222</td>
</tr>
<tr>
<td>Hazelton Medal</td>
<td>222</td>
</tr>
<tr>
<td>Harris Banking</td>
<td>223</td>
</tr>
<tr>
<td>University Oratorical</td>
<td>223</td>
</tr>
<tr>
<td>Interscholastic Oratorical</td>
<td>223</td>
</tr>
<tr>
<td>Beneficiary Aid</td>
<td>224</td>
</tr>
<tr>
<td>Societies and Clubs</td>
<td>224</td>
</tr>
<tr>
<td>Literary</td>
<td>224</td>
</tr>
<tr>
<td>Christian Associations</td>
<td>225</td>
</tr>
<tr>
<td>Auxiliary to Courses of Study</td>
<td>225</td>
</tr>
<tr>
<td>Special Advantages for Women</td>
<td>227</td>
</tr>
<tr>
<td>Household Economics</td>
<td>227</td>
</tr>
<tr>
<td>The Fine Arts</td>
<td>228</td>
</tr>
<tr>
<td>Physical Culture</td>
<td>229</td>
</tr>
<tr>
<td>Social Advantages</td>
<td>229</td>
</tr>
<tr>
<td>Accredited High Schools</td>
<td>230</td>
</tr>
<tr>
<td>Military Science</td>
<td>234</td>
</tr>
<tr>
<td>Physical Training</td>
<td>236</td>
</tr>
<tr>
<td>General Information</td>
<td>237</td>
</tr>
<tr>
<td>Lectures and Concerts</td>
<td>238</td>
</tr>
<tr>
<td>Expenses</td>
<td>239</td>
</tr>
<tr>
<td>Board</td>
<td>239</td>
</tr>
<tr>
<td>Fees</td>
<td>239</td>
</tr>
<tr>
<td>Estimate of Necessary</td>
<td>240</td>
</tr>
<tr>
<td>Preparatory School</td>
<td>241</td>
</tr>
<tr>
<td>Instructors</td>
<td>241</td>
</tr>
<tr>
<td>Admission</td>
<td>241</td>
</tr>
<tr>
<td>Course of Study</td>
<td>242</td>
</tr>
<tr>
<td>Courses of Instruction</td>
<td>243</td>
</tr>
<tr>
<td>Algebra</td>
<td>243</td>
</tr>
<tr>
<td>Botany</td>
<td>243</td>
</tr>
<tr>
<td>English</td>
<td>244</td>
</tr>
<tr>
<td>Free-Hand Drawing</td>
<td>244</td>
</tr>
<tr>
<td>French and German</td>
<td>244</td>
</tr>
<tr>
<td>Geometry</td>
<td>244</td>
</tr>
<tr>
<td>Greek</td>
<td>245</td>
</tr>
<tr>
<td>History</td>
<td>245</td>
</tr>
<tr>
<td>Latin</td>
<td>246</td>
</tr>
<tr>
<td>Physics</td>
<td>246</td>
</tr>
<tr>
<td>Physiology</td>
<td>247</td>
</tr>
<tr>
<td>Zoölogy</td>
<td>247</td>
</tr>
</tbody>
</table>
CONTENTS

Preparatory School—Continued.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulations</td>
<td>247</td>
</tr>
<tr>
<td>List of Students</td>
<td>248</td>
</tr>
<tr>
<td>Graduate School</td>
<td>248</td>
</tr>
<tr>
<td>Resident Graduate</td>
<td>249</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>249</td>
</tr>
<tr>
<td>Special</td>
<td>263</td>
</tr>
<tr>
<td>Preparatory</td>
<td>265</td>
</tr>
<tr>
<td>Summer School 1895</td>
<td>269</td>
</tr>
<tr>
<td>Winter School in Agriculture</td>
<td>270</td>
</tr>
<tr>
<td>Summary</td>
<td>270</td>
</tr>
<tr>
<td>Holders of Fellowships, Scholarships, Prizes, and Commissions</td>
<td>271</td>
</tr>
<tr>
<td>Honorrary Scholarships</td>
<td>271</td>
</tr>
<tr>
<td>Accredited School Scholarships</td>
<td>272</td>
</tr>
<tr>
<td>Holder of Chicago Club Loan Fund</td>
<td>272</td>
</tr>
<tr>
<td>Winner of Hazelton Prize Medal</td>
<td>272</td>
</tr>
<tr>
<td>Roster of Officers and Non-Commissioned Officers of the Military Battalion, 1895-96</td>
<td>272</td>
</tr>
<tr>
<td>Calendar</td>
<td>274</td>
</tr>
<tr>
<td>Index</td>
<td>276</td>
</tr>
</tbody>
</table>
"The practical farmer, the ingenious mechanic, the talented artist, the upright legislator or judge, the accomplished teacher, are only modifications or varieties of the original man. The man is the trunk; the occupations and professions are only different qualities of the fruit it yields. The development of the common nature, the cultivation of the germs of intelligence, uprightness, benevolence, truth, that belongs to all—these are the principle, the aim, the end; while special preparation for the field or the shop, for the forum or the desk, for the land or the sea, are but incidents."—Horace Mann.
BOARD OF TRUSTEES

The Governor of Illinois, Ex Officio.
John P. Altgeld, Springfield.

The President of the State Board of Agriculture, "
James W. Judy, Tallula.

The Superintendent of Public Instruction, "
Samuel M. Inglis, Springfield.

Richard P. Morgan, Dwight.

Dr. Julia Holmes Smith, Chicago.
33 Central Music Hall.

Nelson W. Graham, Carbondale.

Napoleon B. Morrison, Odin.
James E. Armstrong, Chicago.
529 Sixty-second Street.

Isaac S. Raymond, Sidney.

Alexander McLean, Macomb.
Samuel A. Bullard, Springfield.

Lucy L. Flower, Chicago.
The Virginia.

Term of office expires in
1897.

Term of office expires in
1899.

Term of office expires in
1901.

OFFICERS OF THE BOARD

James E. Armstrong, Chicago, President.
William L. Pillsbury, Urbana, Secretary.

Charles W. Spalding, Chicago, Treasurer.
510 Monadnock Block.

Professor S.W. Shattuck, Champaign, Business Manager.

EXECUTIVE COMMITTEE

James E. Armstrong, Chairman; Samuel A. Bullard,
Isaac S. Raymond.

STANDING COMMITTEES

Farm

Isaac S. Raymond, Chairman; Napoleon B. Morrison,
Alexander McLean, James W. Judy.
Buildings and Grounds

Samuel A. Bullard, Chairman; Richard P. Morgan, Isaac S. Raymond, Lucy L. Flower.

Finance

Napoleon B. Morrison, Chairman; Nelson W. Graham, Samuel A. Bullard.

Instruction

Lucy L. Flower, Chairman; Samuel M. Inglis, Dr. Julia H. Smith, Isaac S. Raymond.

Publication

Richard P. Morgan, Chairman; President Andrew S. Draper, William L. Pillsbury.

Library

President Andrew S. Draper, Chairman; Samuel M. Inglis, Alexander McLean, Professor S. W. Shattuck, Assistant Professor Percy F. Bicknell.

Students' Welfare

Dr. Julia H. Smith, Chairman; Richard P. Morgan, Nelson W. Graham.
OFFICERS OF ADMINISTRATION

ADMINISTRATIVE OFFICERS IN THE UNIVERSITY

PRESIDENT: ANDREW S. DRAPER, LL.D. Office, 12 University Hall.

BUSINESS MANAGER: SAMUEL W. SHATTUCK, C.E. Office, 14 University Hall. Office hours, 3 to 5 p.m.

REGISTRAR: WILLIAM L. PILLSBURY, A.M. Office, 14 University Hall. Office hours, 2 to 5 p.m.

COUNCIL OF ADMINISTRATION AND DEANS

PRESIDENT: ANDREW S. DRAPER, LL.D.
DEAN OF THE GENERAL FACULTY AND OF THE GRADUATE SCHOOL: THOMAS J. BURRILL, Ph.D., LL.D. Office, 10 Natural History Hall. Office hour, 11 to 12 a.m.
DEAN OF THE COLLEGE OF LITERATURE AND ARTS: DAVID KINLEY, Ph.D. Office, 16 University Hall. Secretary to the Council. Office hours, 10 to 11 a.m. and 4 to 5 p.m.
DEAN OF THE COLLEGE OF ENGINEERING: N. CLIFFORD RICKER, M.Arch. Office, 300 Engineering Hall. Office hours, 2:20 to 4:20 p.m.
DEAN OF THE COLLEGE OF SCIENCE: STEPHEN A. FORBES, Ph.D. Office, 4 Natural History Hall. Office hours, 11 to 12 a.m. and 4 to 5 p.m.
DEAN OF THE COLLEGE OF AGRICULTURE: EUGENE DAVENPORT, M.Ag. Office, 27 Natural History Hall. Office hour, 11 to 12 a.m.

LIBRARIAN
PERCY FAVOR BICKNELL, A.M. Office, Library.

SUPERINTENDENT OF BUILDINGS AND GROUNDS
GEORGE WASHINGTON GRAHAM. 807 South Wright Street, Champaign. Office, Room K, University Hall.
BOARD OF DIRECTION OF THE AGRICULTURAL EXPERIMENT STATION

Professor T. J. BURRILL, President.

From the State Board of Agriculture,
 E. E. CHESTER, Champaign.

From the State Horticultural Society,
 E. A. RIEHL, Alton.

From the State Dairymen's Association,
 H. B. GURLER, DeKalb.

ISAAC S. RAYMOND, Sidney.
NAPOLEON B. MORRISON, Odin.
President ANDREW S. DRAPER.
Professor STEPHEN A. FORBES.
Professor EUGENE DAVENPORT.
FACULTY

[IN ORDER OF SENIORITY OF APPOINTMENT, EXCEPT THE PRESIDENT.]

ANDREW SLOAN DRAPER, LL.D., PRESIDENT.
President’s House, West Green Street, U.*

JOHN MILTON GREGORY, LL.D., Professor of Political
Economy, emeritus. Washington, D. C.

THOMAS JONATHAN BURRILL, Ph.D., LL.D., VICE-
President, Dean of the General Faculty, Professor
of Botany and Horticulture. 1007 West Green Street, U.

SAMUEL WALKER SHATTUCK, C.E., Professor of
Mathematics. 108 West Hill Street, C.

EDWARD SNYDER, A.M., Professor of the German Lan-
guage and Literature. 1411 West Springfield Avenue, U.

NATHAN CLIFFORD RICKER, M.Arch., Dean of the
College of Engineering, Professor of Architecture.
612 West Green Street, U.

IRA OSBORN BAKER, C.E., Professor of Civil Engineer-
ing. 702 West University Avenue, C.

STEPHEN ALFRED FORBES, Ph.D., Dean of the
College of Science, Professor of Zoology.
1209 West Springfield Avenue, U.

CHARLES WESLEY ROLFE, M.S., Professor of Geology.
211 West Green Street, U.

DONALD McINTOSH, V.S., Professor of Veterinary Science.
507 West Church Street, C.

ARTHUR NEWELL TALBOT, C.E., Professor of Munici-
pal and Sanitary Engineering.
617 West University Avenue, C.

ARTHUR WILLIAM PALMER, Sc.D., Professor of Chem-
istry. 105 North Elm Street, C.

FRANK FORREST FREDERICK, Professor of Art and
Design. 604 South Mathews Avenue, U.

* U stands for Urbana; C for Champaign.
SAMUEL WILSON PARR, M.S., Professor of Applied Chemistry.
918 West Green Street, U.

HERBERT JEWETT BARTON, A.M., Professor of the Latin Language and Literature. 406 West Hill Street, C.

CHARLES MELVILLE MOSS, Ph.D., Professor of the Greek Language and Literature.
917 West Green Street, U.

DANIEL KILHAM DODGE, Ph.D., Professor of the English Language and Literature.
511 West University Avenue, C.

LESTER PAIGE BRECKENRIDGE, Ph.B., Professor of Mechanical Engineering. 1005 West Green Street, U.

DANIEL WILLIAM SHEA,† Ph.D., Professor of Physics. 403 West Hill Street, C.

DAVID KINLEY, Ph.D., Dean of the College of Literature and Arts, Professor of Political Economy and Social Science. 507 West Green Street, U.

DANIEL HARMON BRUSH, Capt. 17th Infantry, U. S. A., Professor of Military Science. 509 West University Avenue, C.

EUGENE DAVENPORT, M.A.G., Dean of the College of Agriculture, Professor of Animal Husbandry.
Experiment Station Farm, U.

ARNOLD TOMPKINS, A.M., Professor of Pedagogy. 410 John Street, C.

GEORGE WILLIAM MYERS, M.L., Associate Professor of Mathematics. 601 West Green Street, U.

HENRY ELIJAH SUMMERS, B.S., Associate Professor of Human Physiology and Vertebrate Anatomy. 205 East Green Street, C.

EDGAR J TOWNSEND, Ph.M., Secretary, Associate Professor of Mathematics. 402 West Springfield Avenue, C.

EVARTS BOUTELL GREENE, Ph.D., Associate Professor of History. 606 West Green Street, U.

KATHARINE MERRILL, A.B., Assistant Professor of the English Language and Literature. 606 John Street, C.

WILLIAM OTTERBEIN KROHN, Ph.D., Assistant Professor of Psychology. 907 South Wright Street, C.

† Resigned Nov., 1896.
JAMES McLAREN WHITE, B.S., Assistant Professor of Architecture. 106 West University Avenue, C.
WILLIAM HUMPHREY VANDERVOORT, M.E., Assistant Professor of Mechanical Engineering. 905 West Green Street, U.
WILLIAM DAVID PENCE, C.E., Assistant Professor of Civil Engineering. 608 East Green Street, C.
HARRY SANDS GRINDLEY, Sc.D., Assistant Professor of Chemistry. 602 East Green Street, C.
THOMAS ARKLE CLARK, B.L., Assistant Professor of Rhetoric. 913 1-2 West Green Street, U.
HERMAN S PIATT, A.M., Assistant Professor of Romance Languages. 501 South Mathews Avenue, U.
BERNARD VICTOR SWENSON, B.S., Assistant Professor of Electrical Engineering. 302 West Hill Street, C.
ARTHUR HILL DANIELS, Ph.D., Assistant Professor of Philosophy. 609 West Green Street, U.
PERCY FAVOR BICKNELL, A.M., Librarian, with rank of Assistant Professor. 709 South Wright Street, C.
GEORGE DAY FAIRFIELD, A.M., Assistant Professor of Romance Languages. 804 West Illinois Street, U.
CHARLES WESLEY TOOKE, A.M., Assistant Professor of Public Law and Administration. 804 West Illinois Street, U.
WALTER HOWE JONES, Assistant Professor of Music. 603 East Daniel Street, C.
HENRY HOUGHTON EVERETT, Assistant Professor and Director of Physical Training. 604 South Busey Avenue, U.
GEORGE DANIEL HAMMOND, Ph.D., Assistant Professor of History. 603 West Green Street, U.
FRED ANSON SAGER, B.S., Assistant Professor of Physics. 502 West Elm Street, U.
WILLIAM ESTY, B.S., A.M., Assistant Professor of Electrical Engineering. 603 West Green Street, U.

INSTRUCTORS AND ASSISTANTS

CYRUS DANIEL McLane, B.S., Instructor in Architecture. 913 1-2 West Green Street, U.
WILLIAM EMANUEL SANDFORD, Ph.C., Instructor in Pharmacy. Cor. White and New Streets, C.

JAMES DAVID PHILLIPS, B.S., Instructor in General Engineering Drawing. 202 West Park Street, C.

FRANK SMITH, A.M., Instructor in Zoology. 310 West Clark Street, C.

RALPH PARSONS SMITH, Ph.B., Instructor in German. 307 West Hill Street, C.

HELEN ELIZA BUTTERFIELD, M.L., Instructor in Rhetoric. 408 West Church Street, C.

ALTON CYRELL BURNHAM, B.S., Instructor in Mathematics. 502 West Elm Street, U.

ROBERT ALVIN WOOD, M.E., Instructor in Mechanical Engineering. 1006 West Illinois Street, U.

GEORGE ALFRED GOODENOUGH, B.S., Instructor in Mechanical Engineering. 511 John Street, C.

OSCAR QUICK, A.B., Instructor in Physics. 910 West Green Street, U.

BURTON EVANS MOORE, A.M., Instructor in Physics. 502 West Elm Street, U.

ARTHUR LEROY ALMY, M.E., Instructor in Electrical Engineering. 302 West Hill Street, C.

GEORGE PERKINS CLINTON, M.S., Assistant in Botany. 213 California Street, U.

CYRIL BALFOUR CLARK, Foreman in Machine Shops. 602 John Street, C.

CHARLES ALEXANDER GUNN, B.S., Assistant in Architecture. 311 West Hill Street, C.

ALFRED HOLMES WHITE, A.B., Assistant in Chemistry. 106 West University Avenue, C.

ALBERT ROOT CURTISS, Foreman in Wood Shops. 606 John Street, C.

GEORGE WASHINGTON McCLUER, M.S., Assistant in Horticulture. 505 John Street, C.

HENRY JONES, Foreman in Blacksmith Shop. 602 East Green Street, C.

JEREMIAH GEORGE MOSIER, B.S., Assistant in Geology. 212 West Illinois Street, U.
ROBERT CLARK VIAL, B.S., Assistant in General Engineering Drawing. 207 West Springfield Avenue, C.

CHARLES FREDERICK HOTTES, M.S., Assistant in Botany. 405 North State Street, C.

EDWARD JOHN LAKE, B.S., Assistant in Art and Design. 211 West Clark Street, C.

ELLA HORTENSE MORRISON, Director of Physical Culture for Women. 604 John Street, C.

GEORGE A. HUFF, Jr., Assistant Director of Gymnasium and Coach of Athletic Teams. 302 West Clark Street, C.

ELINOR EDWINA ELLSWORTH,* B.M., Assistant in Vocal Music. 809 West Green Street, U.

MILO SMITH KETCHUM, B.S., Assistant in Civil Engineering. 512 East John Street, C.

CLENDON VANMETER MILLAR, M.S., Assistant in Chemistry, on State Water Survey. 611 West Green Street, U.

PAUL CHIPMAN, B.S., Assistant in Theoretical and Applied Mechanics. 103 West University Avenue, C.

ADELINE WHITNEY ROWLEY, B.M., Assistant in Vocal Music. 606 John Street, C.

JOSEPH HENDERSON WILSON, Foreman in Foundry. 105 South Fourth Street, C.

MARION THOMPSON, B.L., Fellow in French. 408 West Church Street, C.

WILLIAM LABARTHE STEELE, Scholar in Music. 512 East Green Street, C.

ROBERT KNIGHT PORTER, Assistant in Military Science. 402 West Clark Street, C.

*Resigned Dec. 20, 1895.

SPECIAL LECTURERS

[For Subjects, see p. 237.]

PROFESSOR EDWARD W. BEMIS, Ph.D., Chicago, Ill.

MRS. HELEN CAMPBELL, Madison, Wis.

HON. JOHN G. HILL, Cincinnati, Ohio.
PROFESSOR C. LLOYD-MORGAN, Principal of University College, Bristol, England.

Mr. DWIGHT C. MORGAN, Dwight, Ill.

ISHAM RANDOLPH, C.E., Chief Engineer of the Chicago Drainage Canal, Chicago, Ill.

Mr. LORADO TAFT, Chicago, Ill.

Miss MATHILDE WERGELAND, Ph.D., Chicago, Ill.

Professor BURT G. WILDER, Ph.D., Cornell University, Ithaca, N. Y.

PREPARATORY SCHOOL

EDWARD GARDNIER HOWE, Principal.

South Mathews Avenue, U.

NATHAN AUSTIN WESTON, B.L., Instructor in Mathematics and History.

604 John Street, C.

LILLIE ADELLE CLENDENIN, Instructor in English.

601 West Green Street, U.

CHARLES NELSON COLE, A.B., Assistant in Greek and Latin.

604 John Street, C.

REUBEN S DOUGLASS, A.B., Assistant in Mathematics.

801 South Wright Street, C.

GEORGE DAVID HUBBARD, Assistant in Science. U.
STATE LABORATORY OF NATURAL HISTORY

Laboratory Staff

Professor STEPHEN ALFRED FORBES, Ph.D., Director of State Laboratory and State Entomologist.
1209 Springfield Avenue, U.

FRANK SMITH, A.M., Assistant Zoologist.
310 West Clark Street, C.

CHARLES ARTHUR HART, Curator of Collections.
927 West Green Street, U.

WILLIS GRANT JOHNSON, A.M., Assistant Entomologist.
510 Daniel Street, C.

CHARLES ATWOOD KOFOID, Ph.D., Superintendent of Biological Station.
909 California Avenue, U.

BENJAMIN MINGE DUGGAR, A.M., Botanical Assistant.
909 California Avenue, U.

ADOLPH HEMPEL, B.S., Zoological Assistant.
Biological Station, Havana, Ill.

MARY JANE SNYDER, Secretary.
601 John Street, C.

HENRY CLINTON FORBES, Librarian and Business Agent.
928 West Green Street, U.

LYDIA MOORE HART, Artist.
917 West Green Street, U.

AGRICULTURAL EXPERIMENT STATION

Station Staff

Professor THOMAS JONATHAN BURRILL, Ph.D., Horticulturist and Botanist. 1007 West Green Street, U.

WILLIAM LOW PILLSBURY, A.M., Secretary.
504 West Elm Street, U. Office, 6, Natural History Hall.

Professor EUGENE DAVENPORT, M.S., Agriculturist.
Experiment Station Farm, U.

CYRIL GEORGE HOPKINS, M.S., Chemist.
409 West Main Street, U.

Professor STEPHEN ALFRED FORBES, Ph.D., Consulting Entomologist.
1209 Springfield Avenue, U.

Professor DONALD McINTOSH, V.S., Consulting Veterinarian.
505 West Church Street, C.
GEORGE WASHINGTON McCLUER, M.S., Assistant Horticulturist. 505 John Street, C.

GEORGE PERKINS CLINTON, M.S., Assistant Botanist. 913 California Avenue, U.

WILLIAM AMBROSE POWERS, B.S., Assistant Chemist. 1411 Springfield Avenue, U.

WILBER JOHN FRASER, B.S., Assistant Agriculturist. 1003 South Wright Street, C.
UNIVERSITY OF ILLINOIS

LOCATION

The University of Illinois has its seat in Champaign County, in the eastern central part of the state, between the cities of Champaign and Urbana, within the corporate limits of the latter. It is one hundred and twenty-eight miles southward from Chicago, at the junction of the Illinois Central, the Cleveland, Cincinnati, Chicago and St. Louis, and the Wabash railroads. The situation is a beautiful one, and the "art that doth mend nature" has added rare charms to the grounds and surroundings. The country around is one of the richest and most prosperous agricultural regions of the world, and the local municipalities, with a combined population of 15,000, are noted for public spirit and high moral tone.

HISTORY

In 1862 the national government donated to each state in the Union public land scrip apportioned in quantity equal to 30,000 acres for each senator and representative in congress, "for the endowment, support, and maintenance of at least one college, whose leading object shall be, without excluding other scientific and classical studies, and including military tactics, to teach such branches of learning as are related to agriculture and the mechanic arts, * * * * in order to promote the liberal and practical education of the industrial classes in the several pursuits and professions of life."

Under this act Illinois received scrip for 480,000 acres of land subject to location in any surveyed but unoccupied part of the public domain. Twenty-five thousand acres were thus located in Nebraska and Minnesota, and the remainder of the scrip was sold for what it would bring. Or the land which was secured, about 14,000 acres have been sold at from $10.00 to $15.00 an acre. In compensation for waiting something more than a quarter of a century, the land when
all sold will add to the endowment fund nearly as much as was obtained for the much greater proportion of the scrip originally sold. The entire principal sum received from the sale of scrip and of land is to be held inviolate as endowment, only the income being available for current expenditures.

To secure the location of the University several counties entered into a sharp competition by proposing to donate to its use specified sums of money, or their equivalent. Champaign county offered a large brick building, erected for a seminary and nearly completed, about 1,000 acres of land for a campus and farms, and $100,000 in county bonds. To this the Illinois Central railroad added $50,000 in freight. In consideration of this offer the institution was located, May 8, 1867, in the suburbs of Urbana, adjoining Champaign.

The state legislature has from time to time appropriated various sums for permanent improvements, as well as for maintenance. The present value of the entire property and assets is estimated at $1,600,000.

The institution was incorporated under the name of the Illinois Industrial University the last day of February, 1867, and placed under the control of a board of trustees constituted of the governor, the superintendent of public instruction, and the president of the state board of agriculture, as ex-officio members, and twenty-eight citizens appointed by the governor. The chief executive officer, usually called president, was styled regent, and he was made, ex officio, a member of the board and presiding officer both of the board of trustees and of the faculty.

In 1873 the board of trustees was reorganized by the reduction of the number of appointed members to nine and of ex-officio members to two, the governor and the president of the state board of agriculture. In 1887 a law was passed making membership elective at a general state election and restoring the superintendent of public instruction as an ex-officio member. There are, therefore, now three ex-officio members and nine by public suffrage. Since 1873 the president of the board has been chosen by the members thereof from among their own number, for a term of one year.

The University was opened to students March 2, 1868, at which time there were present, beside the regent, three professors and about fifty students. During the first term
another instructor was added, and there was a total enrollment of 77 students, all young men.

During the first term instruction was given in algebra, geometry, physics, history, rhetoric, and Latin. Along with this, work on the farm and gardens or around the buildings was compulsory for all students. But in March of the next year compulsory labor was discontinued, save when it was made to serve as a part of class instruction. A chemical laboratory was fitted up during the autumn of 1868, and students then began practical work in the department. Botanical laboratory work was commenced the following year. In January, 1870, a temporary mechanical shop was fitted up with tools and machinery, and in this little wooden building, originally constructed for a carpenter shop, was begun the first shop-instruction given in any American university. During the summer of 1871 a large brick structure, the present Engineering Laboratory, was erected and equipped for students' shop work in both wood and iron. A diploma of merit was awarded for the exhibition in this line made at the Centennial Exposition.

By vote, March 9, 1870, the trustees admitted women as students, and during the year 1870-71 twenty-four availed themselves of the privilege. Since that time they have constituted from one-sixth to one-fifth of the total number of students.

By the original state law certificates showing the studies pursued and the attainments in each were given instead of the usual diplomas and degrees. The certificates proved unsatisfactory to the holders, and, on petition of the alumni, the legislature, in 1877, gave the University authority to confer degrees.

Upon request of the alumni, seconded by the trustees and faculty, the legislature, in 1885, changed the name of the institution to the "University of Illinois."

During the same session of the legislature a bill was passed transferring the State Laboratory of Natural History from the Illinois State Normal University to the University of Illinois. This laboratory was created by law for the purpose of making a natural history survey of the state, with the publication of the results in a series of bulletins and reports, and for the allied purpose of furnishing specimens illustrative of the flora and fauna of the state to the public schools, and to the state
museum. For these purposes direct appropriations are made by the legislature from session to session. A large amount of material has been collected and extended publications have been made in both the forms above mentioned.

By an act approved March 2, 1887, the national government appropriated $15,000 per annum to each state for the purpose of establishing and maintaining, in connection with the colleges founded upon the congressional act of 1862, agricultural experiment stations, "to aid in acquiring and diffusing among the people of the United States useful and practical information on subjects connected with agriculture, and to promote scientific investigation and experiment respecting the principles and applications of agricultural science." Under this provision the station for Illinois was placed under the direction of the trustees of the University and its grounds were located on the University farm. At least one bulletin of results is published every three months, and they are for gratuitous distribution. Editions of 17,000 copies are now issued.

For the more complete endowment of the state institutions founded upon the act of 1862, the congress of the United States, by a supplementary law passed in 1890, made further appropriations. Under this enactment each such college or university received the first year $15,000, the second $16,000, and likewise thereafter $1,000 per annum additional to the amount of the preceding year. The annual increase is to continue until the amount reaches $25,000, which sum is then to be paid yearly thereafter.

The total appropriations by the state to the University for all purposes to date amount to $1,303,000.

BUILDINGS AND GROUNDS

The land occupied by the University and its several departments embraces about 210 acres, including experimental farm, orchards, forest plantation, arboretum, ornamental grounds, and military parade grounds.

The Chemical Laboratory is a building 75 by 120 feet, and two stories high, besides well lighted basement and mansard stories. It contains the general laboratories for students, instructors' laboratories, lecture rooms, store rooms, scale rooms, and various apartments for special purposes.
Engineering Hall has a frontage of 200 feet, a depth of 76 feet on the wings and 138 feet in the center. The middle wing is 72 feet wide. The first story of the west and central wings contains the laboratories of the department of electrical engineering, while the east wing is devoted to masonry laboratories and instrument rooms of the department of civil engineering. The central wing of the second story contains the lecture room and the preparation rooms of the department of physics, the remainder of the floor being used by the departments of civil and municipal engineering for recitation and drawing rooms, cabinets, and studies. The middle wing of the third story contains the laboratories of the department of physics, and the side wings the drawing rooms, lecture rooms, cabinets, and studies of the mechanical department. The central portion contains the library, the office, and the faculty parlor. The fourth story is devoted entirely to the department of architecture, and contains drawing and lecture rooms, cabinets, photo studio, and a blue-print laboratory.

The Engineering Laboratory (formerly Machinery Hall) are in a brick building two stories high, 126 feet in length, and 88 feet in width, which contains the laboratory of applied mechanics, the hydraulic laboratory, and the mechanical engineering laboratory. The wood shop of the mechanical engineering department is situated on the second floor of this building. A room on the first floor is reserved as a repair shop, and is in charge of the Superintendent of Buildings and Grounds.

Machinery Building.—This name will be applied to the building, erected during the fall of 1895, which contains the machine shop, forge shop, and foundry of the Mechanical Engineering Department. It is a one-story brick building, 50 by 250 feet, and contains a lecture room, office rooms, machine shop, foundry, and forge shop. This last is a room 48 by 140 feet. On each side of the machine shop is a line shaft 2½ inches in diameter. A three-ton traveling crane of 12 feet span covers the center of the floor for the entire length, extending over a driveway 10 feet wide at the east end of the shop. The floor of the driveway is paved and is 3 feet below the floor of the machine shop.

The foundry comes next to the machine shop, the floor being on the level of the driveway. A large wing extends
north from the center of the foundry, containing core ovens, rattler, and cupola.

The forge shop adjoins the foundry, at the eastern end of the building.

Military Hall, 100 by 150 feet in one grand hall, gives ample space for company and battalion manoeuvres and for large audiences upon special occasions. It is also used as a gymnasium, for which purpose there are dressing rooms with lockers. A bath room is provided.

Natural History Hall is a handsome building, 134 by 94 feet, with basement, two main stories, and an attic. It is occupied by the departments of botany, zoölogy, physiology, mineralogy, and geology, for each of which there are laboratories, lecture rooms and offices; it also contains the office and equipments of the State Laboratory of Natural History, and of the State Entomologist, as well as the office and library of the Agricultural Experiment Station. There are six laboratory rooms on each of the main floors—sufficient altogether to accommodate two hundred students, besides offering abundant facilities for the private work of the instructors.

University Hall occupies three sides of a quadrangle, measuring 214 feet in front and 122 feet upon the wings. Besides numerous class rooms it contains the office of the President, the museum, the library, and the art gallery.

There are, in addition to these buildings, a veterinary hall, an astronomical observatory, four dwellings, two large barns, and a greenhouse.

ART GALLERY

The University art gallery was the gift of citizens of Champaign and Urbana. It occupies a room 61 by 79 feet in University Hall, and the large display of art objects has surprised and delighted all visitors. In sculpture it embraces thirteen full-size casts of celebrated statues, including the Laocoön group, the Venus of Milo, etc., forty statues of reduced size, and a large number of busts, ancient and modern, bas reliefs, etc., making over four hundred pieces in all. It includes also hundreds of large autotypes, photographs, and fine engravings, representing many of the great masterpieces of painting of nearly all the modern schools; also a gallery of historical portraits, mostly large French lithographs of peculiar
fineness, copied from the great national portrait galleries of France.

Other collections of special value to art students embrace a large number of casts of ornament from the Alhambra and other Spanish buildings, presented by the Spanish government; a set of casts from Germany illustrating German Renaissance ornament; a series of art work from the Columbian Exposition, and large numbers of miscellaneous casts, models, prints, and drawings, such as are usually found in the best art schools.

A notable feature of the collection of works of art is the gift of Henry Lord Gay, architect, of Chicago. It consists of a model in plaster and a complete set of drawings of a competitive design for a monument to be erected in Rome, commemorative of Victor Emanuel, first king of Italy. The monument was to be of white marble, an elaborate Gothic structure, beautifully ornamented, and 300 feet high. Its estimated cost was to have been seven and a quarter millions of francs. The design was placed by the art committee second on a list of 289 competitors.

The library, selected with reference to the literary and scientific studies required in the several courses, had, March 1, 1896, 28,200 volumes and 6,200 pamphlets.

The large library hall is open throughout the day for study, reading, and reference work. It is intended that the use of the library shall largely supplement the class-room instruction in all departments. Constant reference is made in classes to works contained in the library, and their study is encouraged or required. On the same floor as the library is the reading room of the University, well supplied with daily papers and the more important weekly and monthly periodicals, both literary and scientific. The new library building, in process of erection, will soon enable the University to offer its members greatly increased library facilities.

The library of the State Laboratory of Natural History and that of the Agricultural Experiment Station are both open to students of the University. They contain over 7,000 volumes, several thousand pamphlets, and 150 series of periodicals.
LABORATORIES

SCIENCE LABORATORIES*

The botanical, geological, physiological, and zoological laboratories are in Natural History Hall. There has been added to the botanical laboratory during the present year a glazed addition, 14 by 19 feet, two stories in height, to facilitate experiments upon living plants exposed to sunshine.

The chemical laboratory, already described, is entirely devoted to chemistry.

The physics laboratories are in Engineering Hall. They are well arranged, and provided with all modern conveniences.

The psychological laboratory in Natural History Hall is well provided with apparatus of many different kinds for use in experimental study, research, and instruction.

ENGINEERING LABORATORIES

The cement laboratory of the department of civil engineering occupies two large rooms in Engineering Hall, and is provided with slate tables, testing machines, molding machines, sieves, etc., and twenty-four sample barrels of hydraulic cement, varieties of sand and other necessary materials.

The electrical engineering laboratories are partly in Engineering Hall and partly in University Hall.

The mechanical laboratory occupies a large part of both floors of Engineering Laboratory and each of its departments is equipped for practical work by students.

The testing laboratory, located in Engineering Laboratory, gives opportunity to students of the College of Engineering to make various practical experiments and tests, and to prosecute original investigation in their specialties.

SPECIAL LABORATORIES FOR RESEARCH

The laboratory of the Agricultural Experiment Station occupies the top floor of the Chemical Laboratory.

The laboratory rooms of the State Laboratory of Natural History are in Natural History Hall.

A Biological Experiment Station has been established by the University on the Illinois River at Havana, Illinois, and equipped for field and experimental work in aquatic biology. It has its separate staff, but is open to students of the University.

*For a more detailed account of these laboratories, see under the appropriate college.
at all times on application, and to special students not otherwise connected with the University during the summer months.

A laboratory for sanitary water analysis has recently been equipped with all necessary appliances, and chemical investigation of the water supplies of the state is now under way.

COLLECTIONS*

AGRICULTURAL

A large room in University Hall is devoted to the exhibition of the products of the industrial arts, especially of agriculture. Prominent among the agricultural specimens exhibited is an excellent collection of the sub-species and varieties of Indian corn, including the best of their kinds. There is also a considerable collection of small grains and of grasses; a collection of fibres in various states of manufacture; a series of analyses of grains, showing at a glance the elements and proportion of structure, and a large collection illustrating the forestry of Illinois, Florida, and California. The exhibits made by the University at the Centennial and at the Cotton Exposition at New Orleans find a permanent abode in this apartment; very large additions have also been made of materials received from the Columbian Exposition of 1893.

BOTANICAL

The herbarium contains nearly all the species of flowering plants indigenous to Illinois, including a complete set of grasses and sedges. The flora of North America is fairly well represented, and a considerable collection of foreign species has been made. A collection of fungi includes a very full set of those most injurious to other plants, causing rusts, smuts, moulds, etc. A collection of wood specimens from two hundred species of North American trees well illustrates the varieties of native wood.

Plaster casts represent fruits of many of the leading varieties as well as interesting specimens of morphology, showing peculiarities of growth, effects of cross-fertilization, etc.

ENGINEERING

The following departments of the College of Engineering

*For a more detailed account of the collections in the different departments, see the appropriate subject under each college.
have made extensive and very valuable collections, which will be found in their rooms in Engineering Hall.

Architecture

A large number of specimens of stone, bricks, terra cotta, sanitary fittings, casts of mouldings and of ornament have been accumulated, together with some excellent specimens of industrial arts, models of structures, working drawings of important buildings, 2,200 lantern slides, and 17,000 plates and photographs.

Civil Engineering

The Civil Engineering department has a large room containing samples of iron, steel, wood, brick, and stone; materials for roads and pavements; models of arches and trusses, one of the latter being full-sized details of an actual modern railroad bridge. The department also possesses a very large collection of photographs and blue-print working drawings of bridges, metal skeleton buildings, masonry structures, and standard railroad construction.

Electrical Engineering

A number of display boards of wires and cables have been accumulated, together with collections of carbons, insulators, lighting specialties, signaling devices, primary and secondary cells, rail bonds, and several hundred photographs, blue prints, and pamphlets descriptive of the best modern practices in Electrical Engineering.

Mechanical Engineering

This department owns a partial set of Reuleaux models, models of valve gears; sections of steam pumps, injectors, valves of various kinds, skeleton steam and water gauges, standard packings, steam-pipe coverings, drop forgings; fine examples of castings, perforated metal, sets of drills and samples of oil, plates from exploded boilers and examples of defective boiler plates, and samples of iron and steel. A large number of working drawings from leading firms and from the U. S. Navy Department form a valuable addition to the above collections.

Geological

Lithology is represented by type collections of rocks (2,900 specimens), arranged to illustrate Rosenbusch, from Voigt
and Hochgesang, Dr. L. Eger, and A. Kranz; a type collection from Ward; a large number of ornamental building stones, and a stratigraphic collection to illustrate Illinois geology.

The **mineralogical** collection is especially rich in rock-forming minerals, ores, and materials of economic value. It contains over 7,000 specimens which have been carefully selected to meet the wants of the student.

The **paleontological** collection (43,400 specimens) contains representative fossils from the entire geologic series, but is especially rich in palæozoic forms. It embraces the private collections of Dr. A. H. Worthen, including 650 type specimens; that of Tyler McWhorter, presented by himself; that of Rev. Mr. Hertzer, acquired by purchase; the Ward collection of casts, presented by Hon. Emory Cobb, and a considerable number of special collections representing the fauna and flora of particular groups.

A series of relief maps of noted localities adds greatly to the facilities for illustration.

ZOÖLOGICAL

The zoölogical collections have been specially selected and prepared to illustrate the courses of study in natural history, and to present a synoptical view of the zoölogy of the state.

The mounted mammals comprise an unusually large and instructive collection of the ruminants of our country, including male and female moose, elk, bison, deer, antelope, etc., and also several quadrupedal forms, large carnivora and fur-bearing animals, numerous rodents, good representative marsupials, cetaceans, edentates, and monotremes. Fifty species of this class are represented by eighty specimens. All the orders, excepting the Proboscidea, are represented by mounted skeletons. There is also a series of dissections in alcohol, illustrating the comparative anatomy of the group.

The collection of mounted birds includes representatives of all the orders and families of North America, together with a number of characteristic tropical, Bornean, and New Zealand forms. The collection is practically complete for Illinois species. Many of the specimens are excellent examples of artistic taxidermy. There is also a fine collection of the nests
and eggs of Illinois birds. A series of several hundred un-mounted skins is available for the practical study of species, and the internal anatomy is shown in alcoholic dissections and in mounted skeletons of all the orders.

The cold-blooded vertebrates are represented by a series of mounted skins of the larger species, both terrestrial and marine; mounted skeletons of typical representatives of the principal groups; alcoholic specimens, both entire and dissected; and casts. The alcohols include series of the reptiles, amphibians, and fishes, the latter comprising about three hundred species. The dissections illustrate the internal anatomy of the principal groups. The casts represent about seventy-five species, nearly all fishes.

The Mollusca are illustrated by alcoholic specimens of all classes and orders, and dissections showing the internal anatomy of typical forms. There are several thousand shells belonging to seventeen hundred species. The collection of Illinois shells is fair but incomplete.

Of the Arthropoda the entomological cabinet contains about three thousand species (principally American), named, labeled, and systematically arranged. There is also a series of Crustacea, some dried but mostly in alcohol, the latter including a number of dissections.

The lower invertebrates are represented by several hundred dried specimens and alcohols, and by a large series of the famous Blaschka glass models.

The embryology of vertebrates and invertebrates is illustrated by a set of Ziegler wax models, and several series of slides, sections, and other preparations.

In addition to the above, the extensive collections of the State Laboratory of Natural History are available for illustrative purposes, as well as for original investigation by advanced students.

THE MUSEUM

The Museum of Zoölogy occupies a room in University Hall, and contains important collections selected to illustrate the courses in natural history and to present a synoptical view of the zoölogy of the state.
ADMISSION

Applicants for admission to the freshman class must be at least sixteen years of age, and it is desirable that they should be two or three years older than this. No distinction is made with regard to sex, nativity, color, or place of residence.

Entrance may be made at any time, provided the candidate is competent to take up the work of the classes then in progress; but it is very much better to begin upon the first collegiate day in September, when a large number of the classes are organized, very many of them to continue during the year.

Admission to the freshman class of the University may be obtained in one of four ways: (a) by certificate from an accredited high school; (b) by examination; (c) by transfer of credits from some other college or university; (d) by obtaining permission to enter certain classes as a special student.

ADMISSION BY CERTIFICATE FROM ACCREDITED HIGH SCHOOLS*

Certain public high schools and a few private preparatory schools have been, after examination, approved by the Faculty of the University, and full graduates of these schools are admitted to the freshman class without examination. Candidates for admission in this way must file with the Registrar upon entrance a certificate of graduation and of preparatory studies. Blanks for these certificates must be obtained of the Registrar in advance, and it is better to forward them to him for approval before registration days.

ADMISSION BY EXAMINATION

Examinations of candidates for admission to the University, are held at the University on the Thursday, Friday, and Saturday before the beginning of the fall term in September, and on the two days previous to the opening of each of the other terms. Each candidate must be in attendance during the whole period of the examinations.

*For an account of these, see page 220.
The scholarship examinations* held each year on the first Saturday in June and the day preceding, in counties in which there are applicants for state scholarships, afford an opportunity to pass the entrance examinations before coming to the University, as the examinations will be equivalents.

The subjects upon which the entrance examinations are held are described below.

The physics, physiology, and botany described are each required as preparatory to these subjects as taught in this University. The text-books are named merely to aid in showing the requirements. Equivalents are accepted.

Entrance to the University means admission to some one of the colleges of the University—College of Literature and Arts, College of Engineering, College of Science, or College of Agriculture.†

The examinations which a candidate is required to pass depend in part on which of the four colleges of the University he intends to enter. In the following statement of subjects for examination, those requirements which are common to all the colleges are given first; then follow statements of the additional requirements for each college. To determine on what subjects he must pass examinations, then, a candidate must add to the uniform requirements first stated those classed as additional for the particular college he wishes to enter.

SUBJECTS IN WHICH ALL CANDIDATES FOR ADMISSION MUST BE EXAMINED

[For additional requirements for the different colleges, see pages 38-40.]

1. ALGEBRA.—Fundamental operations, factoring, fractions, simple equations, involution, evolution, radicals, quadratic equations, and equations reducible to the quadratic form, surds, theory of exponents, and the analysis and solution of problems involving these. The subject as given in Wells’s Higher Algebra through quadratic equations, or the same work in Wentworth’s Algebra, or an equivalent.

2. COMPOSITION AND RHETORIC.—Correct spelling, capitalization, punctuation, paragraphing, idiom, definition, and proper use of rhetorical figures; the elements of Rhetoric. The candidate will be required to write two paragraphs of

* See page 220.
† See Organization, page 44.
about one hundred and fifty words each to test his ability to use the English language.

3. **ENGLISH LITERATURE.**—(a) Each candidate is expected to have read certain assigned literary masterpieces, and will be subjected to such an examination as will determine whether or not he has done so. The books assigned for the next three years are as follows:

1897.—Shakspere's *As You Like It*; Defoe's *History of the Plague in London*; Irving's *Tales of a Traveler*; Hawthorne's *Twice-Told Tales*; Longfellow's *Evangeline*, and George Eliot's *Silas Marner*.

(b) In addition to the above the candidate will be required to present a brief outline of American Literature. Hawthorne and Lemmon's *Outline of American Literature*, or an equivalent.

4. **GEOMETRY.**—Plane Geometry as given in Wells's or Wentworth's *Geometry*, or an equivalent. Great importance is attached to the ability of the student to solve original problems.

5. **HISTORY.**—At least one year in one of the following subjects: (a) English and United States History; (b) General History; or (c) Greek and Roman History. The following text-books indicate the scope of the requirements: Guest & Underwood's *Handbook of English History*; Thomas's *History of the United States*; Oman's *History of Greece*; Allen's *Short History of Rome*.

6. **PHYSICS.**—The elements of physical science as presented in such text-books as Appleton's *School Physics*, or Avery's *Elements of Natural Philosophy*, or Carhart & Chute's Elements of Physics, or Gage's *Elements of Physics*. The candidate must have had laboratory practice as given in Hays, Lowry & Rishel's *Laboratory Manual of Physics*, or an equivalent.
In addition to the preceding subjects, any two of the following:

7. AstronomY.—The subject as given in Young's Elements of Astronomy, or Newcomb & Holden's Astronomy for High Schools.

8. Botany.—The parts and organs of plants, in the descriptive language of the science; the relations of plants to the atmosphere, to temperature, light, soil, etc., to the inferior animals, and to man; characteristics of prominent orders, and the determination of species by use of an artificial key. Gray's School and Field Book of Botany.

9. Chemistry.—Elementary Inorganic Chemistry as presented in Freer's Elementary Chemistry; Shepard's Elements of Chemistry; Williams's Elementary Chemistry; Storer and Lindsey's Manual of Elementary Chemistry; Armstrong & Norton's Laboratory Manual of Chemistry, or Clark's Elements of Chemistry. Laboratory practice is essential for preparation in this subject.

10. Physiology.—The anatomy, histology, and physiology of the human body and the essentials of hygiene, taught with the aid of charts and models and demonstrations upon inferior animals, to the extent given in Martin's Human Body (Briefer Course).

11. Zoology.—The subject as taught in the best high schools with laboratory facilities. Mere text-book work will not be accepted. The following will indicate the scope of the work required: Colton's Practical Zoology; Parker's Elementary Biology, and Thompson's Outlines of Zoology.

Additional Requirements for Admission to the College of Literature and Arts

[The following, in addition to the requirements on page 36ff.]

12. English Literature.—The candidate will be examined on the subject-matter, form and substance of one or more books in addition to those named under (3). For 1896, 1897, and 1898 the books will be selected from the lists below. The examination will be of such a character as to require a minute and thorough study of each of the works named in order to pass it successfully.

1896.—Shakespeare's The Merchant of Venice; Milton's L'AlLEGRO, Il Penseroso, Comus, and Lycidas; and Webster's First Bunker Hill Oration.
1897.—Shakspere's The Merchant of Venice; Burke's Speech on Conciliation with America; Scott's Marmion, and Macaulay's Life of Samuel Johnson.

1898.—Shakspere's Macbeth; Burke's Speech on Conciliation with America; De Quincey's The Flight of a Tartar Tribe; Tennyson's The Princess.

13. LATIN.—Four books of Caesar's Commentaries, six orations of Cicero, six books of Vergil's Aeneid, the scansion of hexameter verse and Latin composition based on the reading above specified. Increasing importance is placed on ability to write Latin and on a knowledge of the quantity of the vowels. Candidates are urged to make special preparation in these directions. It is recommended that not more than two books of Caesar be read, and that other authors be substituted for the books omitted. Equivalents for any of the above requirements will be accepted. Allen & Greenough's, Bennett's, or Harkness's Latin Grammar is recommended and Collar's or Daniell's Latin Prose Composition. The Roman pronunciation is used. Frequent oral reading throughout the whole of the preparatory course is especially urged.

Students desiring to pursue Greek in the University must have also the following, which will be accepted instead of the three sciences otherwise required:

14. GREEK.—Grammar, a thorough knowledge of forms and syntax; an amount of Prose Composition equal to that given in Woodruff's Greek Prose Composition; three books of Homer's Iliad, except lines 494-759 of Book II.; three books of Xenophon's Anabasis, or an equal amount of text from some other classic prose author.

ADDITIONAL REQUIREMENTS FOR ADMISSION TO THE COLLEGE OF ENGINEERING

[The following, in addition to the requirements stated on page 36ff.]

15. FREE-HAND DRAWING.—Ten hours a week for one term, or the equivalent thereof. The nature of the work is indicated by Cross's Free-Hand Drawing.

16. GEOMETRY.—Solid and spherical geometry as given in Wells's or Wentworth's Plane and Solid Geometry, or an equivalent.

One of the following:

17. FRENCH.—Elements of grammar, tested by the translation of simple French prose at sight. At least one year's
work. Chardenal's Complete French Course, or an equiva-

18. **GERMAN.**—Elements of grammar, tested by the trans-
lation of easy German prose. At least one year's work. Joynes-Meissner's German Grammar, Joynes's German Reader, or equivalents, and 100 pages of easy prose.

19. **LATIN.**—Elements of grammar, tested by the transla-
tion of easy Latin prose. At least one year's work. Allen & Greenough's Grammar and Viri Romae, or an equivalent.

ADDITIONAL REQUIREMENTS FOR ADMISSION TO THE COLLEGE OF SCIENCE

[The following, in addition to the requirements stated on page 36ff.]

16. **GEOMETRY.**—Solid and spherical geometry as given in Wells's or Wentworth's Plane and Solid Geometry, or an equivalent.

One of the following:

17. **FRENCH.**—Elements of grammar, tested by the trans-
lation of simple French prose at sight. At least one year's work. Chardenal's Complete French Course, or an equiva-

18. **GERMAN.**—Elements of grammar, tested by the transla-
tion of easy German prose. At least one year's work. Joynes-Meissner's German Grammar, Joynes's German Reader, or equivalents, and about 300 pages of easy prose.

19. **LATIN.**—Elements of grammar, tested by the translation of easy Latin prose. At least one year's work. Allen & Greenough's Grammar, and Viri Romae, or an equivalent.

ADDITIONAL REQUIREMENT FOR THE COLLEGE OF AGRICULTURE

[The following, in addition to the requirements stated on page 36ff.]

16. **GEOMETRY.**—Solid and spherical geometry as given in Wells's or Wentworth's Plane and Solid Geometry, or an equivalent.

PROGRAM OF EXAMINATIONS, SEPT. 3-8, 1896

All persons who wish to enter the University at the open-
ing of the fall term, 1896, except those holding certificates of graduation from accredited schools and scholarship certificates and those for whom a transfer of all entrance credits from
some other college, or University has already been approved, must present themselves at the registrar’s office, room 14, University Hall, at 9 o’clock a.m., Thursday, September 3d. At that time applications for admission will be received, and applicants will be given all necessary directions as to examinations.

The program of examinations is as follows.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Thursday</td>
<td>1:00 p.m.</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>3:00 “</td>
</tr>
<tr>
<td>Algebra</td>
<td>Friday</td>
<td>8:00 a.m.</td>
</tr>
<tr>
<td>Physiology</td>
<td></td>
<td>1:00 p.m.</td>
</tr>
<tr>
<td>Botany</td>
<td></td>
<td>3:00 “</td>
</tr>
<tr>
<td>Geometry</td>
<td>Saturday</td>
<td>8:00 a.m.</td>
</tr>
<tr>
<td>Zoology</td>
<td></td>
<td>1:00 p.m.</td>
</tr>
<tr>
<td>German</td>
<td></td>
<td>3:00 “</td>
</tr>
<tr>
<td>English Literature and Composition</td>
<td>Monday</td>
<td>8:00 a.m.</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td>1:00 p.m.</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td>3:00 “</td>
</tr>
<tr>
<td>Latin</td>
<td>Tuesday</td>
<td>8:00 a.m.</td>
</tr>
<tr>
<td>Free-Hand Drawing</td>
<td></td>
<td>9:30 “</td>
</tr>
<tr>
<td>Astronomy</td>
<td></td>
<td>1:00 p.m.</td>
</tr>
<tr>
<td>Greek</td>
<td></td>
<td>3:00 “</td>
</tr>
</tbody>
</table>

ADMISSION BY TRANSFER FROM OTHER COLLEGES AND UNIVERSITIES

A person who has entered another college or university of recognized standing will be admitted to this University upon his presenting a certificate of honorable dismissal from the institution from which he comes and an official statement of the subjects upon which he was admitted to such institution, provided it appears that the subjects are those required here for admission by examination, or real equivalents. Candidates, to enter the University in this way, should submit such papers to the Registrar before the time of entrance, so that all doubtful points may be cleared up in advance.

ADMISSION AS SPECIAL STUDENTS

Persons over twenty-one years of age, not candidates for a degree, may be limited to classes, after satisfying the President and professor in charge of the department in which such classes are taught, that they possess the requisite information and ability to pursue profitably, as special students, the chosen
subjects. Such students are not matriculated; they pay a tuition fee of five dollars a term and incidental fees.

ADMISSION TO ADVANCED STANDING

After satisfying in some of the ways already enumerated all the entrance requirements for admission to the freshman class of the college which he wishes to enter, the applicant for advanced standing may secure such standing either by examination or by transfer of credits from some other college or university.

1. By Examination.—Candidates for advanced standing, not from other colleges or universities, may secure such standing on examination only. In the case of freshmen students seeking advanced standing on the basis of their preparatory work, such standing shall be granted after satisfactory examination only.

2. By Transfer of Credits.—Credits from other colleges or universities may be accepted by the faculty for advanced standing; but at least one year's residence at the University and the completion of one year's work are necessary to secure a bachelor's degree.

In all cases, a certificate of honorable dismissal is required, together with a certified record of work done in the institution from which the applicant comes. These should be presented for approval some time before the student enters for work.

REGISTRATION

At the beginning of each term each student must present himself for registration within the time set for that purpose before the formation of classes, and he must be present at the first exercise of each class he is to attend.

EXAMINATIONS

Examinations are held as often as in the judgment of the instructor the necessities of the work require. Examinations are also given at the close of each term, on the work of the term, in all subjects except those whose character renders it unnecessary or impracticable. Students who are conditioned in these examinations are required to take a second examination
soon after the beginning of the following term. Those who fail to pass the term examination are precluded from proceeding with any University work without special permission. A record is kept of each student's standing.

TERMS AND VACATIONS

The University year is divided into three terms. The first covers fourteen weeks of instruction and each of the others eleven. There is a vacation of two weeks at the end of the first term, and of one week at the end of the second. For the dates of opening and closing see the calendar, p. —.

GRADUATION

The requirements for graduation are specified under the several colleges.*

ADMINISTRATION OF THE UNIVERSITY

GOVERNMENT

The government of the University is vested by the Trustees primarily in the President of the University, in the Faculty, in the Council of Administration, and in the Deans.

The dean of the general Faculty has general oversight of the instructional work of the University, and especial supervision of the graduate school.

The dean of each college is responsible for the enforcement of all University regulations within his college.

The Council of Administration is composed of the President, the dean of the general Faculty, and the deans of the separate colleges. It constitutes an advisory board to the President, and has exclusive jurisdiction over all matters of discipline.

The determination of the general internal policy of the University is in the hands of the Faculty.

The Faculties of the different colleges of the University have jurisdiction over matters pertaining exclusively to their colleges, subject always to higher University authority.

ORGANIZATION

For the purpose of more efficient administration, the University is divided into several colleges. This division does not imply that the colleges are educationally distinct. They are interdependent and together form a unit. The organization is as follows:

1. The College of Literature and Arts,
II. The College of Engineering.
III. The College of Science.
IV. The College of Agriculture.
V. The Graduate School.
VI. The School of Pharmacy.

THE COLLEGE OF LITERATURE AND ARTS

The College of Literature and Arts offers—
1. General courses, classified according to the principal line of work chosen.
2. Specialized courses, or courses under the group system, including—
 a. The Classical Group.
 c. The Philosophical Group.
 d. The Political Science Group.

THE COLLEGE OF ENGINEERING

The College of Engineering offers courses—
1. In Architecture.
2. In Architectural Engineering.
3. In Civil Engineering.
4. In Electrical Engineering.
5. In Mechanical Engineering.

THE COLLEGE OF SCIENCE

The College of Science offers courses arranged in four groups, as follows:
1. The Chemical Group.
2. The Mathematical Group.
3. The Natural Science Group.
4. The Philosophical Group.

THE COLLEGE OF AGRICULTURE

The College of Agriculture offers—
1. A course leading to Animal Husbandry as a specialty.
2. A course leading to Horticulture as a specialty.
THE GRADUATE SCHOOL

The Graduate School offers courses in—
1. Agriculture.
2. Engineering.
3. Literature, Philosophy, and the Arts.
4. The Sciences.

An enumeration of the departments of graduate study is given on page 129, and the separate courses offered are described in connection with the proper subjects in the description of departments, pp. 129ff.

THE SCHOOL OF PHARMACY

[See page 127.]
COLLEGE OF LITERATURE AND ARTS

FACULTY

Andrew S. Draper, LL.D., President.
David Kinley, Ph.D., Dean, Economics and Sociology.
Thomas J. Burrill, Ph.D., LL.D., Botany.
Samuel W. Shattuck, C.E., Mathematics.
Edward Snyder, A.M., German.
Charles W. Rolfe, M.S., Geology.
Arthur W. Palmer, Sc.D., Chemistry.
Frank F. Frederick, Art and Design.
Herbert J. Barton, A.M., Latin.
Charles M. Moss, Ph.D., Greek.
Daniel K. Dodge, Ph.D., English.
Arnold Tompkins, A.M., Pedagogy.
George W. Myers, M.L., Mathematics.
Henry E. Summers, B.S., Physiology.
Edgar J. Townsend, Ph.M., Mathematics.
Evarts B. Greene, Ph.D., History.
Katharine Merrill, A.B., English.
William O. Krohn, Ph.D., Psychology.
Harry S. Grindley, Sc.D., Chemistry.
T. Arkle Clark, B.L., Rhetoric.
Herman S. Piatt, A.M., Romance Languages.
Arthur H. Daniels, Ph.D., Secretary, Philosophy.
Percy F. Bicknell, A.M., Librarian.
George D. Fairfield, A.M., Romance Languages.
Charles W. Tooke, A.M., Political Science.
Walter Howe Jones, Music.
Henry H. Everett, Physical Training.
George D. Hammond, A.B., History.
Fred A. Sager, B.S., Physics.
Frank Smith, A.M., Zoology.
Ralph P. Smith, Ph.D., German.
Helen E. Butterfield, M.L., Rhetoric.
Alton C. burner, B.S., Mathematics.
Jeremiah G. Mosier, B.S., Geology.
Charles F. Hottes, M.S., Botany.
Edward J. Lake, B.S., Art and Design.
Ella H. Morrison, Physical Culture for Women.
George A. Huff, Jr., Coach of Athletic Teams.
Marion Thompson, B.L., Fellow, Rhetoric.
William Lab. Steele, Scholarship in Music.
Robert K. Porter, Military.

Aims and Scope

The College of Literature and Arts includes those branches usually comprised in a department of philosophy and arts, with the exception of the natural sciences. The aim of the college is a double one: to furnish a liberal education, and to afford the largest opportunity for specialization in literary and philosophical subjects. It is believed that this double purpose can be best accomplished by a judicious combination of disciplinary and information studies, which, while so directing the work of the student as to secure the desired mental training, shall also allow him large liberty of choice both in his main lines of work and in subjects auxiliary thereto.

In accordance with this general plan, it is provided that students may graduate either under the general course system or under the specialized course, or group. system.

A general course is one in which less than three years' work in any one line is required for graduation, and in which no thesis is required.

A specialized, or group, course is one containing at least two years of major work in a single subject preceding the senior year, followed by an additional year of major work in that subject, and the writing of an acceptable thesis. No student may be enrolled in a specialized course without the permission of the head of the department in which he wishes to do his principal work, and each student who wishes to be so enrolled must specify the course he desires to enter not later than the beginning of his junior year.
Only those students who pursue a specialized course shall, as a rule, be selected from this college for fellowships, scholarships, and other similar University honors.

THE GENERAL COURSE SYSTEM

In the general courses a minimum of prescribed work is laid out for the first two years. The whole of the work for the first year, and part of that of the second, is prescribed. The work for the rest of the course is elective. Within the limits of the prescribed work, moreover, the student is permitted a choice of lines of work.

In choosing his electives, each student must select at least two subjects from list A, as majors.

In the choice of his electives other than his major work the student may take a minimum of work in a maximum number of subjects, or he may take a maximum amount of work in the minimum number of subjects necessary to fill up his time according to the rules of the University.

The elective courses open to the students of the College include subjects from the Colleges of Agriculture, Science, and Engineering. The sciences are not an integral part of the work of this College, but the training derived from their study is so important a part of a liberal education that every student of the College is earnestly advised to extend his study of them so far as may be.

THE SPECIALIZED COURSE, OR GROUP, SYSTEM

In the specialized course, or group, system the prescribed work is the same as in the general courses. The other credits necessary for graduation are to be obtained in the subjects of the group which the student enters. (See requirements for graduation, below.) The groups are as follows:

The Classical Group, including Greek and Latin as the major subjects.

The English and Modern Language Group, including English, French, German, Italian, and Spanish. At present Italian and Spanish may not be chosen as major subjects.

The Philosophical Group, including Pedagogy, Philosophy and Psychology as major subjects. In this group the
second year of the student's work is devoted to studies specifically preparatory to the principal subject, which is itself taken up at the beginning of the third year.

Students in this group who make Philosophy a major must, in the second year, make three full term-credits from among these subjects: Anthropology, Psychology, Economics 6 (Sociology), Greek 5.

Those who make Psychology their major subject must, in their second year, make three full term-credits from among these subjects: Botany 1, b. c.; Economics 6; Philosophy 1, 8; Physiology 1, 2; Zoology 3.

When Pedagogy is the major the three second year credits must be obtained in Logic (Phil. 8) and two terms of Psychology.

The Political Science Group, including History, Economics, and Public Law and Administration. All students in this group must take the three elementary courses: History 1, Economics 1, and Political Science 1; and must also take at least one term's work in Philosophy, selected from courses 1, 2, 3, 4, and 8. All students in the group must, before the beginning of junior year, have taken one year's work in either French or German, or must give other satisfactory evidence of their ability to use freely at least one of these languages.

CLASSIFICATION OF SUBJECTS

PRESCRIBED

Advanced Algebra (Math. 1, 2) 1 credit.
English 1; 1 I-5 credits.
French 1, German 1, Greek 1, 2, 3, or Latin 1, 2, 3; 3 credits.
Geometry, Solid (Math. 19); 1 credit.
History 1; 1 4-5 credits.
Logic (Philosophy 8); 1 credit.
Military 1, 2; 2 credits.
*Natural Science; 3 credits.
Rhetoric 1; 2 credits.
Trigonometry (Math. 3, 4); 1 credit.

*The three credits required in science may be obtained by taking a single subject through the year, or by combining single-term minors.
ELECTIVE

List A (Major Courses)

Economics 1 to 8; 100; 6 to 14 credits.
English 1 to 14; 6 to 21 3-5 credits.
French 1 to 4; 6 to 12 credits.
German 1 to 4; 6 to 12 credits.
Greek 1 to 9; 6 to 9 credits.
History 1 to 12; 6 to 15 3-5 credits.
Latin 1 to 10; 6 to 10 credits.
Mathematics 1 to 19; 6 to 15 4-5 credits.
Pedagogy 1 to 9; 6 to 9 credits.
Philosophy 1 to 7, 9; 6 credits.
Political Science 1 to 9; 6 to 9 2-5 credits.
Psychology 1 to 9; 6 to 9 credits.
Rhetoric 1 to 4; 6 credits.

List B

Anthropology; 1 credit.
Art and Design 1 to 4, 7, 8, 9; 3 to 6 credits.
Astronomy 4; 1 credit.
Biology, General, 1, 2; 1 to 2 credits.
Botany 6; 1 to 4; 1 to 6 credits.
Chemistry 1, 2, 3a, 3b, 4, 5, 7, 9, 10, 12, 20; 1 to 11 credits.
Economics 1 to 7; 2 to 10 3-5 credits.
English 2 to 14; 3-5 to 20 2-5 credits.
French 1 to 4, 5; 3 to 12 credits.
Geology 4; 1; 1 or 3 credits.
German 1 to 4, 5, 6; 3 to 12 credits.
Greek 1 to 9; 3 to 9 credits.
History 2 to 12; 11-5 to 13 4-5 credits.
Italian 1; 3 credits.
Latin 1 to 10; 3 to 10 credits.
Mathematics 5 to 18; 1 to 12 4-5 credits.
Meteorology 1; 2-5 credits.
Mineralogy 1, 2; 3 credits.
Music 1, 2; 2 credits.
Paleontology, 2 credits.
Pedagogy 1 to 9; 1 to 9 credits.
Philosophy 1 to 7, 9; 2-5 to 6 credits.
Physiology 4, 1, 2; 1, 2 or 5 credits.
Physical Culture for Women, 1; 1 to 4 credits.
Physics 2; 1, 3 to 7; 1 to 11 credits.
Political Science 1 to 9; 2-5 to 9 2-5 credits.
Psychology 1 to 9; 1 to 9 credits.
Rhetoric 3, 4; 1 to 4 credits.
Spanish 1; 3 credits.
Zoölogy 1 to 6, 10, 11; 2 to 11 credits.

REQUIREMENTS FOR GRADUATION

UNDER THE GENERAL COURSE SYSTEM

Forty full term-credits, including Military, are required for graduation under the general-course system. Every student must take the prescribed subjects; in addition, he must select at least two subjects from list A. He must then choose from lists A and B work which will give him the remainder of his necessary credits.

No credits will be granted in any subject in either list except according to the enumeration given. For example, if work is offered in a subject for from three to six credits, no credit will be allowed for less than three terms' work.

UNDER THE SPECIALIZED COURSE, OR GROUP, SYSTEM

Forty full term-credits, including Military, together with an acceptable thesis, are required for graduation under the group system. Every student must take the prescribed subjects. In addition he must, not later than the beginning of his junior year, specify the group in which he wishes to graduate. He must at this time select one subject in the group as his major subject, the study of which, alone or with the subjects designated as specifically preparatory* to it, he must pursue during the remaining two years, securing therein at least nine full term-credits. He must also select, with the approval of the head of the department in which his major subject lies, a sufficient number of other studies to yield him the necessary complement of credits, and he must present an acceptable thesis.

* See p. 50.
connected with the student’s major study. It must present the results of investigation made under the immediate supervision of the instructor during the last year of the student’s course. This work of investigation shall be the required work in the major subject, in whole or in part, during that year, and shall receive credit like any other study. Separate credit will not be given for the thesis.

No credit will be allowed in any subject except according to the enumeration given, and the same work shall not be credited both as major and minor work.

The only degree given in this college is that of A. B.

The prescribed studies must be taken in the term and year indicated in the outline of courses by years and terms.

In Music

Students in the department of Music may receive a certificate of graduation by complying with the following conditions:

Students of the piano or organ must complete the entire course specified for these instruments; must also complete the work offered in harmony, covering four terms, and must take one year’s work (3 credits) in either German or French.

Students of the voice must complete the entire course offered in vocal work, the four terms’ work in harmony, and one year’s work on the piano, besides taking one year (3 credits) of German or French, and one year (3 credits) of Italian.

Students expecting to graduate in any of the above courses in music must also pass a satisfactory examination in the History of Music, and must write a thesis on some musical subject.

Students enrolled in the department of music only, pay no term fees, but must pay the music fees described on p. 239.

COURSES OF INSTRUCTION BY YEARS AND TERMS

The following statement gives the years and terms in which the prescribed subjects must be taken. Students in the general courses who take Greek and Latin may omit the science required.
FIRST YEAR

1. Advanced Algebra (Math. 1, 2); French 1, 5*, German 1, 5*, Greek 1, or Latin 1; Military 1, 2; Natural Science: Chemistry 1; Zoölogy 10, 11; Rhetoric 1.
2. French 1, 5*, German 1, 5*, Greek 2, or Latin 2; Military 1, 2; Natural Science: Biology 1, Chemistry 2, 3a, Geology 4, Physics 2, or Zoölogy 1, 2, 3; Rhetoric 1; Trigonometry (Math. 3, 4).
3. French 1, 5*, German, 1, 5*, Greek 3, or Latin 3; Geometry, Solid (Math. 19); Military 2; Natural Science: Astronomy 4, Biology 2, Botany 6, Chemistry 2, 3b, 4, 20, or Zoölogy 1, 2; Rhetoric 1.

SECOND YEAR

1. English 1; History 1; Military 2; Electives.
2. English 1; History 1; Military 2; Electives.
3. English 1; History 1; Logic (Philos. 8); Military 2; Electives.

The studies of the third and fourth years are all elective.

DESCRIPTION OF DEPARTMENTS

ART AND DESIGN

This work subserves a threefold purpose: (1) It affords students the opportunity to acquire such a knowledge of free-hand drawing as their chosen courses may require. (2) It offers to such as have a talent or taste for art the best facilities for pursuing studies in all branches of fine art. (3) It offers to those who wish to become teachers of drawing special opportunities for study.

In all courses the work is made of direct benefit to students in other lines, and at the same time it aims to develop in them a love and an appreciation of the beautiful.

Special students, not otherwise connected with the University, may enter this department upon payment of moderate fees. For such students a fourth year of work is offered in drawing, painting, modeling, or design, as they may elect.

Lectures are given each year on lettering, design, historic ornament, perspective, and the theory of color. Students are required to submit one or more plates in each subject.

* Students in the College of Literature and Arts are permitted to take the scientific French and German if they are pursuing major work in Economics, Mathematics, Pedagogy, Philosophy, or Psychology.
Economics

The study of economics by undergraduates may extend through three years. The work is so arranged that the student can take a continuous course for from one to three years. The introductory courses are repeated each year, and the advanced courses are divided into two groups and given in alternate years. Text-books are used in the introductory courses, but only as guides. The assigned readings are designed to cover as large a field as possible in the literature of the subject, to present all disputed matters from different points of view, and are supplemented by discussions and lectures. Educational development, acquaintance with the subject, and training for good citizenship are ends kept steadily in view.

Minor courses in sociology are provided for in the department.

English Language and Literature

The courses are designed to give a continuous view of the twofold subject from the earliest times to our own day. In the junior and senior years double courses are offered, so that students, having had the fundamental work of the sophomore year, may, if desired, confine themselves either to philology or to literature. The aim in the study of literature is to approach the works of an author from the philosophical, emotional, and esthetic, as well as from the merely linguistic and historical, points of view.

French

(See Romance Languages, p. 61.)

German

Four years of instruction are offered in this subject. The first year's class is taught in two divisions: one comprised of students whose purpose is to acquire a knowledge of German literature; the other of those who wish merely a reading knowledge of the language for scientific or technical purposes. The methods of instruction in each division are adapted to the ultimate aims of the study.

The work of the second year is carried on according to the same plan. Course 2 offers a full year of readings in classic
and modern German and composition; course 6 offers two terms of scientific and technical reading. The students are arranged in groups and classes, so as to give each practice in reading in his own special line.

The third year's work consists of the critical study of the classic poets, rapid reading of modern writers, composition, conversation, and lectures on Modern German Literature.

The work of the fourth year is the elementary study of Gothic, Old and Middle High German, and the further study of German Literature. Lectures and instruction are given in German.

Greek

The general purposes of the courses laid out in this subject are: first, to teach the Greek language; second, to train students to appreciate its literature; and third, to call attention to those numerous problems in the history, thought, and institutions of the Greeks which illustrate similar phenomena noticeable among ourselves. To accomplish the first object, due attention is paid to the principles of grammar, particularly by making the syntax appear as the evidence of orderly mental procedure, and by continual practice in extemporaneous translation. The second is effected by a study of the surroundings and spirit of an author, and of those literary devices which give character to his productions. The third end is reached through familiar talks upon suitable topics as they are met.

In courses 7 and 8 a more mature line of work is contemplated, for which courses 1 to 6 are a graded preparation. A prominent feature of this work is the investigation by students of topics requiring the gathering and systematizing of material relating thereto. Ample library and other appliances are provided. Course 9 is more general, but is expected to articulate, for classical students, with courses 1–8, and to supply a consistent outline of the history of the institutional life of the Greeks.

History

The work of this department begins with an elementary course, prescribed for sophomores, in the history of mediæval and modern Europe. The advanced undergraduate work falls into two main divisions, mediæval history and modern history. The undergraduate courses are, finally, followed in each
division by the seminary. These historical seminaries are designed for seniors of high standing, who have had the requisite preliminary training, and for graduates.

Throughout these courses the effort is made not merely to give students a general knowledge of historical facts, but also to give them some conception of the aims and methods of historical science, and of the materials with which it deals. To this end exercises in historical investigation, more or less elementary, will form a prominent part of the work in all the higher undergraduate courses, as well as in the seminaries.

ITALIAN

(See Romance Languages, p. 61.)

LATIN

The courses at present offered in Latin are ten in number and extend over three years. It is recognized that many students are deficient in preparation and need rigid drill in noun and verb syntax, while there are few to whom this drill is not beneficial. With this thought, the first term's instruction is, as far as needed, grammatical, prominence being given to Latin writing as the best method of acquiring a mastery of the language.

Ability to read Latin in the Latin order is strenuously insisted on, as inability in this particular is one of the chief reasons for the small results that many students secure.

As soon as this preliminary work is done, the attention is directed to two ends. The first is the acquisition of a constantly increasing power to read the language with ease and pleasure. As large a number as possible of representative authors are read. The thought is constantly emphasized that students are not simply reading Latin; they are reading some of the great literary masterpieces of the world, and should enjoy them as such. The second aim is to introduce the student to the daily life of the Roman; to make his home life vivid, his political life a reality. The contribution of the Roman world to the language, literature, and institutions of our time is so great that an intimate acquaintance with that life is of the highest educational value.

The courses offered include a teachers' class. The work is based on the needs of those teaching preparatory Latin, and
methods of presentation, difficulties, aims, and results are discussed. The members of the class do the work that they, as teachers, should require of their pupils, and at intervals take charge of the recitation.

The Latin department is amply supplied with all necessary appliances for the successful prosecution of the work.

MATHEMATICS

The object of the instruction in pure Mathematics is to promote habits of mental concentration and continuity of thought, to develop the capacity to form and combine abstract conceptions, and to cultivate deductive reasoning. The course is so arranged as to meet the requirements of those who wish to fit themselves for instructors, and of those who study the science for the love of it.

Parallel with the pure mathematics of the junior and senior years, two lines of associated work in applied mathematics—physical and astronomical—are offered, either of which may be, and one of which must be, taken by the student wishing to make mathematics his leading course. One of these lines leads from the physics of the sophomore year through the mathematical theory of electricity and magnetism, heat, light, and sound; and the other through surveying and mechanics to celestial mechanics and to general and mathematical astronomy.

For fuller information, see p. 97.

MILITARY SCIENCE

(See p.234.)

Music

The department of Music, during the past year, has been entirely reorganized, and offers superior advantages to those desiring a thorough musical education. The courses offered are widely varied, and are arranged to meet the individual needs of students. The time that may be devoted to the subject, especially in the study of an instrument or the voice, is indefinite; however, a regular course is laid out which can be completed by any student of average ability within the period indicated.

The courses in music lead to graduation from the music department with a diploma showing the amount of work
accomplished by the student. The course in the history of music may be taken for credit by students in the College of Literature and Arts according to the conditions specified under "Music" in the description of courses.

In addition to these opportunities the students are privileged to hear good music interpreted by artists of recognized ability. A course of Artists' Concerts is given each season under the management of the department of music. In these concerts, to which an admission fee is charged, only artists of the best reputation appear.

The instructors in the department of music give free recitals and lectures on musical subjects during the year.

Pedagogy

Pedagogy is not only a professional, but a culture study. We cannot escape educating ourselves. The question is only whether we shall educate ourselves well or ill. In the list of courses offered, accordingly, neither logical nor moral training nor the philosophical foundations of pedagogy have been omitted, and the point of view taken throughout is the highest known in the pedagogical field—the Herbartian. The course is broadened to meet the needs, not only of intending teachers, but of all University students.

Philosophy

The work in this department includes History of Philosophy, Metaphysics, Ethics, and Logic, and is so arranged that the student may take a continuous course for either one or two years.

The courses are planned to meet the needs of those who make philosophy their specialty, and also of those who desire an acquaintance with the subject as a means of general culture. It is the constant aim to emphasize the meaning and interest of philosophy and the relations of its problems to the life of man. The subjects are taught by lectures, recitations, and the seminary method.

Physical Culture for Women

Each student who takes physical instruction is expected to undergo a physical examination at the beginning and end of
every year, in order that her physical condition may be known and suitable exercises and advice given. Systematic class work is given in the use of dumb-bells, wands, bar-bells, foils, Indian clubs, and on all pieces of gymnastic apparatus.

During the fall and spring terms, outdoor games and exercises receive considerable attention; during the winter term, indoor games and athletic work are made interesting by public entertainments and contests. Lectures and talks on hygiene, physical training, etc., are given during the winter term.

Special attention is given to the correction of those inequalities of hips, shoulders, and vertebrae which prevent the harmonious development of the body. Each student comes under the personal observation of the director and is given exercises to meet her special needs.

A special gymnasium is fitted up for women.

Every woman student not physically disqualified may take this work. If taken for credit, the conditions laid down under Physical Culture in the description of courses must be complied with.

Political Science

The courses in Political Science are planned with two purposes in view: (1) to give, in conjunction with the instruction in Economics and History, that information and training which are requisite to intelligent citizenship; and (2) to afford opportunities for advanced work to those who may desire more thorough preparation either for active political life, or preliminary to the study of law.

To meet these ends, the work is so arranged that the subject may be pursued continuously for three years. The elementary courses are given every year, while the advanced courses offered in alternate years are made to correlate in accordance with the general scheme. The topics for special investigation in the seminary course will be selected with a view to supplement the advanced work of the year.

The courses, as a whole, are intended to cover the theory of the state, its organization, and practical operation. Attention is paid to the development of political ideas and to the growth of national institutions. The comparative method is followed, wherever practicable. Freedom of discussion is encouraged in the class room, and the student is stimulated to original investigation and to independent thinking.
Psychology

The aim of this department is to acquaint the student with the manifestations of mind, and the laws according to which it develops. In pursuance of this purpose the elements of mentality as exhibited in the various animals and in early infant life are carefully investigated. The mental make-up of the defective and criminal classes is also inquired into in order that light may be thrown upon the best methods to be employed in the treatment of these classes—the best education for the defective, and the best environment for the criminal.

Special attention is given to scientific methods of child study because of the direct and important relations in which the results of such study stand to the various pedagogical theories and to the estimate of the educational value of the different subjects taught in our common schools.

Rhetoric

The courses at present offered in Rhetoric are four, and extend over two years and one term. The object of the courses is not only to acquaint the student with the principles of rhetoric, but to teach him correctness and effectiveness in the use of English. In the first year’s work a text-book is used, supplemented with lectures and a critical discussion of the written exercises. About thirty short themes and two long papers a term are required from each student. More emphasis is put upon practice than upon theory.

The second year’s work is a daily theme course, and is intended to give practice in higher English composition and criticism.

A one-term course is offered in the theory and practice of argumentative discourse.

Romance Languages and Literatures

This department offers four years of instruction in French and one year each in Spanish and Italian. In the elementary courses the main object is to give the student correct pronunciation, grammatical knowledge, and the ability to read the languages with facility. In French 2, attention is especially directed to various phases of nineteenth century literature; effort is made to ground the student thoroughly in the modern
idiom, and lectures are given upon the outlines of French literature in general. French 3 makes a special study of the masterpieces of the seventeenth century. Ability to understand readily spoken French is requisite for admission to this course. The subject of French 4 is literature and society in the eighteenth century. A graduate course is offered in Old French; some of the more important texts are studied, and attention is given to the origins of the language.

Sociology

(See Economics, p. 55.)

Spanish

(See Romance Languages.)
COLLEGE OF ENGINEERING

FACULTY

Andrew S. Draper, LL.D., President.
N. Clifford Ricker, M.Arch., Dean, Architecture.
Thomas J. Burrill, Ph.D., Botany.
Samuel W. Shattuck, C.E., Mathematics.
Ira O. Baker, C.E., Civil Engineering.
Charles W. Rolfe, M.S., Geology.
Arthur N. Talbot, C.E., Municipal and Sanitary Engineering; Mechanics.
Arthur W. Palmer, Sc.D., Chemistry.
Frank F. Frederick, Art and Design.
Samuel W. Parr, M.S., Applied Chemistry.
Daniel K. Dodge, Ph.D., English Language and Literature.
Lester P. Breckenridge, Ph.B., Mechanical Engineering.
George W. Myers, M.L., Mathematics.
Edgar J Townsend, Ph.M., Mathematics.
Katharine Merritt, A.B., English.
James M. White, B.S., Architecture.
William H. VanDerVoort, M.E., Mechanical Engineering.
William D. Pence, C.E., Secretary, Civil Engineering.
T. Arkle Clark, B.L., Rhetoric.
Herman S Platt, A.M., French.
Bernard V. Swenson, B.S., Electrical Engineering.
Fred A. Sager, B.S., Physics.
Cyarus D. McLane, B.S., Architecture; Mechanics.
Ralph P. Smith, Ph.B., German.
Helen E. Butterfield, M.L., Rhetoric.
AIMS AND SCOPE

The purpose of the College of Engineering is thoroughly to educate engineers and architects for their future professional courses. Its aim is therefore twofold—general and technical. A considerable proportion of the course of study is devoted to general and literary work, since a graduate is expected now to arrange his ideas in clear order, and to write or speak effectively. Professional success depends upon this power far more than is commonly supposed.

There is an ever increasing fund of general and scientific knowledge with which every educated man is expected to be conversant, if he desires to retain the esteem of his associates and clients. Scarcely a science is not at some time useful to the engineer, and some of them, like mathematics or physics, are so intimately interwoven with the different branches of technical knowledge, as to be practically indispensable. Much of the most valuable material of these sciences is yet locked up in foreign languages, and they must be acquired by patient study and practice.

It might appear that this general training would be sufficient to absorb the entire attention of the student during his whole course, but not less than one-half his time must be given to purely technical training, and to the acquirement of a
professional capital, or stock of information and knowledge of details.

The methods employed for embodying new ideas in drawings, intelligible to other professional men and to mechanics, must likewise be acquired.

Engineering knowledge must be fresh to be valuable, since ideas and methods are quickly supplanted by improved ones, and become useless except as mile-stones of progress. Consequently the most valuable part of this professional knowledge can never be crystalized in text-books, but must be drawn from the mental stores of the instructor.

METHODS OF INSTRUCTION

Whenever suitable text-books can be found, they are employed because their use saves much time in acquiring facts and data, and because such books become doubly valuable for later reference, when enriched by notes and additions. But to arouse and to awaken the enthusiasm of the student, discussions and formal lectures are necessary, and they must be fully illustrated by sketches, diagrams, drawings, and photographs of executed work. These are frequently used in the advanced classes, partly because the deficiency of text-books is there greatest. Additional courses of extended reading are indicated by references to the University library, so that each student may enjoy the greatest possible benefit from the course of instruction. In all courses of study offered by this College, drawing, in its manifold forms and uses, is made a special feature, both in its application and its modes of execution.

EQUIPMENT

The equipment of the various departments is described under the appropriate heads. In addition to what is there mentioned the College owns some valuable apparatus of a general character. The most important part of this consists of a collection of machines and apparatus for abbreviating computations, and especially for use in the calculation of tables. The principal instruments are described below:

(1) A Thomas ten-place arithmometer, the largest size manufactured, imported especially for the University, and
giving products of numbers to twenty places. (2) Two Thacher’s computing scales, especially accurate, for performing multiplication, division, squaring, and the extraction of square root. (3) An Amsler’s polar planimeter for measuring the area of figures of any form, and employed principally in graphic statics or in measuring indicator diagrams. (4) A Coradi’s rolling planimeter of largest size and a Coradi’s polar planimeter for more accurate use. (5) An Amsler’s integrator for obtaining area, static moment, and moment of inertia of plane figures, especially of sections of columns, beams, etc. (6) A Coradi’s pantagraph of best construction for the reduction of drawings and maps. (7) Various computing machines, including Boucher’s calculator, Ram’s slide rules, duplex slide rule, Webb’s adder, the ribbon adder, etc.

DESCRIPTION OF DEPARTMENTS

ARCHITECTURE

The department of architecture and architectural engineering occupies nearly the entire upper story of Engineering Hall, thereby securing drawing rooms lighted by skylights, convenient class rooms, cabinet, museum, and studies.

INSTRUCTION

The course of study in architecture prepares graduates for professional work as architects, draftsmen, and superintendents of construction. The scientific principles of construction and its practical details, drawing applied to all purposes, the principles of design and their application to the planning and designing of buildings, are therefore made especially prominent in the course of instruction. Great attention is also devoted to the history and esthetics of architecture.

Instruction is imparted by means of text-books, when suitable works exist, by the solution of numerous problems, by blueprint lecture notes and syllabuses, and by constant practice in original design whenever this can be employed. The collection of plates in the architectural cabinet, with models, sketches, and working drawings are used as illustrations and suggestions.

Drawing and designing are practised throughout the entire course, and two years of instruction are provided in
free-hand drawing, modeling, water colors, industrial design, and sketching from nature.

Equipment

A large collection of casts of ornament from Spain and from Germany are jointly used by the departments of architecture and of art. Models of ceilings, roof trusses, stairs, joints in woodwork, with a large number of specimens of stone, terra cotta, moulded bricks, etc., are among the architectural collections, together with an interesting group of Norwegian, Indian, and Japanese art works. A series of working drawings of buildings designed by noted architects is placed in the architectural cabinet for convenient reference.

A fine collection of 17,000 engravings, photographs, and photoprints, mounted on cards eleven by fourteen inches, is placed in the drawing rooms, classified according to the Dewey decimal system, for use in construction, history of architecture, and designing, and forms a most valuable working library for draftsmen and designers.

An electric-arc lantern is permanently placed in a special lecture room with stepped floor. For use with it, there are 2,200 lantern slides illustrating the history of architecture, especially Richardson’s best work, and American houses and club houses.

A good number of the latest and best American, English, French, and German architectural works is to be found in the library of the University.

Apparatus is provided for surveying, for making tests in heating and ventilation, and for making photographs and lantern slides.

The department also possesses a large collection of working drawings from the offices of noted architects of residences, offices, United States buildings, and especially of the more important structures of the World’s Columbian Exposition.

Course of Instruction

Required for Degree of B. S. in Architecture

First Year

1. Advanced Algebra (Math. 2); Elements of Drafting (Drawing, Gen. Eng’g 1, 4); Free-Hand Drawing or Model-
ing (Arch. 20 or 21); French 5, or German 5, or English 1, 2; Military 1, 2.

2. Trigonometry (Math. 4); Descriptive Geometry (Drawing, Gen. Eng’g 2); Free-Hand Drawing or Water Color (Arch. 20 or 21); French 5, or German 5, or English 1, 2; Military 1, 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry (Drawing, Gen. Eng’g 2, 3); Architectural Drawing (Arch. 8); French 5, or German 5, or English 1, 2; Military 2.

SECOND YEAR

1. Applied Mechanics (Theo. and App. Mech. 4); Wood Construction (Arch. 2); Physics 1, 3; Architectural Drawing (Arch. 9); Rhetoric 2; Military 2.

2. Strength of Materials (Theo. and App. Mech. 5); Stone, Brick, and Metal Construction (Arch. 3); Physics 1, 3; Architectural Drawing (Arch. 9); Rhetoric 2; Military 2.

3. Sanitary Construction (Arch. 4); Free-Hand Drawing or Sketching (Arch. 20 or 21); Physics 1, 3; Architectural Drawing (Arch. 9); Rhetoric 2; Military 2.

THIRD YEAR

1. History of Architecture (Arch. 6); Architectural Seminary (Arch. 11); Architectural Designing (Arch. 16); Chemistry 1; Architectural Drawing (Arch. 9).

2. History of Architecture (Arch. 6); Architectural Seminary (Arch. 11); Architectural Perspective (Arch. 14); Requirements and Planning of Buildings (Arch. 15); Architectural Drawing (Arch. 9).

3. History of Architecture (Arch. 7); Architectural Seminary (Arch. 11); Roofs (Arch. 5); Esthetics of Architecture (Arch. 18); Architectural Drawing (Arch. 9).

FOURTH YEAR

1. Heating and Ventilation (Arch. 13); Architectural Designing (Arch. 17); Renaissance Design (Arch. 22); Thesis.

2. Superintendence, Estimates, and Specifications (Arch. 12); Gothic Design (Arch. 23); Romanesque Design (Arch. 24)*; Thesis.

*A second term in Arch. 22 will be accepted in lieu of Arch. 23 or Arch. 24.
3. Surveying (Civil Eng’g 10); Composition of Ornament (Arch. 25); Thesis.

ARCHITECTURAL ENGINEERING

This course of study prepares graduates for professional employment as architects, structural designers, and computers, as well as superintendents of construction. It is intended for students who prefer the structural and mathematical side of the profession to its artistic side, and who desire to pursue the full engineering course in mathematics, and to acquire a thorough knowledge of the iron and steel construction now employed in buildings. It differs from the architectural course principally in the addition of a second year of mathematics; in the substitution of a year of civil engineering study in masonry design, bridge analysis and design, for the year of freehand drawing, and in the devotion of considerably less time to architectural drawing and designing.

Course of Instruction

Required for Degree of B. Sc. in Architectural Engineering

FIRST YEAR

1. Advanced Algebra (Math. 2); Elements of Drafting and Sketching (Drawing, Gen. Eng’g 1 and 4); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1 and 2; Military 1, 2.

2. Trigonometry (Math. 4); Descriptive Geometry (Drawing, Gen. Eng’g 2); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1 and 2; Military 1, 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry and Lettering (Drawing, Gen. Eng’g 2 and 3); Architectural Drawing (Arch 8); French 5, or German 5, or English 1, 2; Military 2.

SECOND YEAR

1. Differential Calculus (Math. 7); Wood Construction (Arch. 2); Physics 1, 2; Architectural Drawing (Arch. 9); Rhetoric 2; Military 2.

2. Advanced Analytical Geometry (Math. 8); Stone, Brick, and Metal Construction (Arch. 3); Physics 1 and 3; Architectural Drawing (Arch. 9); Rhetoric 2; Military 2.
3. Integral Calculus (Math. 9); Sanitary Construction (Arch. 4); Physics 1 and 3; Architectural Drawing (Arch 9); Rhetoric 2; Military 2.

THIRD YEAR

1. Analytical Mechanics (Theo. and Appl’d Mech. 1); History of Architecture (Arch. 6); Architectural Drawing (Arch. 9); Architectural Seminary (Arch. 11); Chemistry 1.

2. Resistance of Materials (Theo. and Appl’d Mech. 2); History of Architecture (Arch. 6); Architectural Drawing (Arch. 9); Architectural Seminary (Arch. 11); Chemistry 16.

3. Hydraulics (Theo. and Appl’d Mech. 3); Roofs (Arch. 5); Dynamo-Electric Machinery (Elect. Eng’g 2); Architectural Drawing (Arch. 9).

FOURTH YEAR

1. Masonry Construction (Civil Eng’g 5); Architectural Designing (Arch. 16); Heating and Ventilation (Arch. 13); Thesis.

2. Bridge Analysis (Civil Eng’g 8); Superintendence, Estimates, and Specifications (Arch. 12); Thesis.

3. Bridge Design (Civil Eng’g 8); Surveying (Civil Eng’g 10); Architectural Engineering (Arch. 19); Thesis.

CIVIL ENGINEERING

The design in this department is to furnish a course of theoretical instruction, accompanied and illustrated by a large amount of practice, which will enable the student to enter intelligently upon the various and important duties of the civil engineer.

INSTRUCTION

While the instruction aims to be practical by giving the student information and practice directly applicable in his future professional work, the prime object is the development of the mental faculties. The power to acquire information and the ability to use it, is held to be of far greater value than any amount of so-called practical knowledge. The method of instruction consists in coupling the development of intellectual power with the acquisition of information directly useful to the civil engineer in his profession.
The instruction is given by lectures, text-books, and reading, to which are added numerous problems and practical exercises, such as will best serve to explain principles completely and fix them in the mind. Models and instruments are continually used both in lectures and by the students.

Equipment

This department has an extensive equipment of compasses, engineer's transits, solar transits, levels—ordinary and precise—plane tables, barometers, etc. An Observatory is provided with the instruments necessary in determining latitude, time, and azimuth. The equipment includes two astronomical transits, a 10-inch altazimuth reading to seconds, two clocks, two chronographs, three chronometers, two sextants, and five isolated masonry piers. For the lecture room, the department is provided with full-size joints of an actual railroad bridge, sections of columns, eye-bars, etc., and a large collection of lithographs, photographs, and blue prints of bridges and buildings.

Course of Instruction

Required for the Degree of B. S. in Civil Engineering

FIRST YEAR

1. Advanced Algebra (Math. 2); Elements of Drafting and Sketching (Drawing, Gen. Eng'g 1 and 4); Shop Practice (Mech. Eng'g 1); French 5, or German 5, or English 1 and 2; Military 1 and 2.

2. Trigonometry (Math. 4); Descriptive Geometry (Drawing, Gen. Eng'g 2); Shop Practice (Mech. Eng'g 1); French 5, or German 5, or English 1, 2; Military 1, 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry and Lettering (Drawing, Gen. Eng'g 2 and 3); Shop Practice (Mech. Eng'g 1); French 5, or German 5, or English 1, 2; Military 1, 2.

SECOND YEAR

1. Differential Calculus (Math. 7); Land Surveying (Civil Eng'g 1); Physics 1 and 3; Rhetoric 2; Military 2.

2. Advanced Analytical Geometry (Math. 8); Drawing and Surveying (Civil Eng'g 2 and 3); Physics 1 and 3; Rhetoric 2; Military 2.
3. Integral Calculus (Math. 9); Drawing and Surveying (Civil Eng'g 2 and 3); Physics 1 and 3; Rhetoric 2; Military 2.

THIRD YEAR

1. Analytical Mechanics (Theo. and Appl'd Mech. 1); Railroad Engineering (Civil Eng'g 4); Chemistry 1.

2. Resistance of Materials (Theo. and Appl'd Mech. 2); Railroad Engineering (Civil Eng'g 4); Road Engineering (Municipal and San. Eng'g 1); Steam Engines and Boilers (Mech. Eng'g 6).

3. Hydraulics (Theo. and Appl'd Mech. 3); Descriptive Astronomy (Astronomy 2); Roofs (Arch. 5).

FOURTH YEAR

1. Masonry Construction (Civil Eng'g 5); Geodesy and Practical Astronomy (Civil Eng'g 6 and 7); Water-Supply Engineering (Mun. and San. Eng'g 2); Thesis.

2. Bridge Analysis (Civil Eng'g 8); Sewerage (Mun. and San. Eng'g 3); Structural Details (Civil Eng'g 11); Thesis.

3. Bridge Designing (Civil Eng'g 8); Tunneling (Civil Eng'g 9); Geology 3; Thesis.

ELECTRICAL ENGINEERING

INSTRUCTION

This course is intended to give young men the best possible preparation for work in the practical applications of electricity. The instruction is given by lectures, laboratory practice, designing, and drafting. The student is encouraged to read the best periodical literature concerning the theory and the applications of electricity. By keeping himself informed as to the best efforts of others in every department of his profession, it is hoped that he may be stimulated to independent thought and original investigation in his own field. To this end, a department reading room, at all times accessible to students in this course, has been established, where the leading American, English, French, and German journals of theoretical and applied electricity are kept on file. The instructors and students meet weekly to discuss the leading articles in current numbers of these journals. A critical discussion of one or more papers is required of each senior twice a month.
This department has quarters in Engineering Hall and in the basement of University Hall. The class rooms, drafting rooms, seminary rooms, studies, and offices are in Engineering Hall. The rooms devoted to laboratory practice are in University Hall, and include the electrical measurement laboratory, the dynamo laboratory, the battery room, the photometry room, and the work shop.

The electrical-measurements laboratory has masonry piers for the more sensitive instruments, and numerous conveniences indispensible to rapid and accurate measurements. In this laboratory the work relating to the measurement of current, resistance, electromotive force, the standardizing of measuring apparatus, etc., is carried on. This laboratory has been supplied with apparatus from the leading makers at home and abroad. There are several forms of bridges, resistance boxes, testing sets, non-inductive and continuously variable rheostats, and certified standards of resistance; the leading forms of galvanometers and reading devices; single and subdivided condensers, standard cells and electrostatic voltmeters; hot-wire instruments; electrodynamometers; current balances; watt-meters; ammeters and voltmeters for direct and alternating currents. Current is brought to this laboratory from the battery room and from the dynamo laboratory.

The dynamo laboratory is supplied with power from a sixty-horse-power steam engine, which is used exclusivley for the experimental work of this department. In this laboratory are to be found the leading types of direct and alternating current dynamos and motors, with conveniences for making complete tests. The equipment includes a complete Thomson-Houston 300-light alternating-current lighting plant, a complete Thomson-Houston 3-light arc-lighting plant, a complete Brush 10-light arc-lighting plant, a complete Edison 100-light incandescent plant, a small 500-volt direct-current power plant, and a small single-phase alternating-current power plant.

The photometry room is fitted out with a complete electric-light photometer, numerous types of incandescent and of direct and alternating current arc-lamps, and conveniences necessary for making complete tests.
The battery room contains a large collection of primary cells and several large batteries of the more important kinds of accumulators with arrangements for efficiency tests.

The work shop is supplied with an engine lathe, a speed lathe, grinder, etc., and a line of fine tools suited to the manufacture of special apparatus. An electric motor furnishes power for this room.

Course of Instruction

Required for the Degree of B. S. in Electrical Engineering

First Year

1. Advanced Algebra (Math. 2); Elements of Drafting and Sketching (Drawing, Gen. Eng'g 1 and 4); Shop Practice (Mech. Eng'g 1); French 5, or German 5, or English 1, 2; Military 1, 2.

2. Trigonometry (Math. 4); Descriptive Geometry (Drawing, Gen. Eng’g 2); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1, 2; Military 1, 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry and Lettering (Drawing, Gen. Eng’g 2, 3); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1, 2; Military 2.

Second Year

1. Differential Calculus (Math. 7); Elements of Machine Design (Mech. Eng’g 4); Shop Practice (Mech. Eng’g 2); Physics 1 and 3; Rhetoric 2; Military 2.

2. Advanced Analytical Geometry (Math. 8); Elements of Machine Design (Mech. Eng’g 4); Shop Practice (Mech. Eng’g 2); Physics 1 and 3; Rhetoric 2; Military 2.

3. Integral Calculus (Math. 9); Elements of Machine Design (Mech. Eng’g 4); Shop Practice (Mech. Eng’g 2); Physics 1 and 3; Rhetoric 2; Military 2.

Third Year

1. Analytical Mechanics (Theo. and Appl’d Mech. 1); Mechanism (Mech. Eng’g 5); Chemistry 1; Electrical Measurements (Physics 4).

2. Resistance of Materials (Theo. and Appl’d. Mech. 2); Steam Engines and Boilers (Mech. Eng’g 6); Chemistry 3a or 16; Electrical Measurements (Physics 4).
3. Hydraulics (Theo. and Appl’d Mech. 3); Chemistry 3b, or Surveying (Civil Eng’g 10); Mechanical Engineering Laboratory (Mech. Eng’g 3); Electrical Measurements (Physics 4); Elements of Dynamo Machinery (Elect. Eng’g 11).

FOURTH YEAR

1. Thermodynamics (Mech. Eng’g 7); Steam Engine Design and Valve Gears (Mech. Eng’g 11); Dynamo-Electric Machinery (Elect. Eng’g 3); Seminary (Elect. Eng’g 10); Thesis.

2. Alternating Currents and Alternating Current Machinery (Elect. Eng’g 4); Photometry (Elect. Eng’g 5); Electrical Communication (Elect. Eng’g 6); Electro-metallurgy (Elect. Eng’g 7); Seminary (Elect. Eng’g 10); Thesis.

3. Alternating Currents and Alternating Current Machinery (Elect. Eng’g 4); Lighting Plants (Elect. Eng’g 8); Electrical Transmission of Power (Elect. Eng’g 9); Seminary (Elect. Eng’g 10); Thesis.

MECHANICAL ENGINEERING

It is the object of this course to give the student a thorough training in the theoretical principles underlying the science of machines and mechanics, and at the same time to enable him to become practically familiar with some of the numerous applications of these principles.

INSTRUCTION

The methods of instruction vary with the subjects under consideration. It is the aim to keep the student interested in his work, with the belief that it is only under such a condition that he will receive the maximum benefit from his work. A practical course in drawing and designing extends through the entire course of study. Shop or laboratory practice is also a part of each term’s work.

EQUIPMENT

The equipment of this department is arranged for work under three heads—class and drawing-room work, mechanical engineering laboratory work, and shop practice. The facilities for class and drawing-room work are unexcelled.
The *drawing rooms* are equipped with modern desks, boards, filing cabinets, card indexes, reference books, catalogues, odontographs, gear charts, tables, etc. In the cabinet rooms are kinematic models and sectioned steam specialties, many of which were donated by the manufacturers.

The *mechanical engineering laboratory* is in the Engineering Laboratory. It contains engines, boilers, pumps, a surface condenser, and a large assortment of indicators, gauges, scales, thermometers, dynamometers, calorimeters, reducing motions, planimeters, measuring tanks, and apparatus for the calibration of instruments. The engines may be run either with or without a condenser, with plain slide or expansion valves, or with automatic or throttling governors. Power is transmitted from the engines in this laboratory to the machine shop by a thirty-horse-power rope drive. Water is brought to the laboratory through a 2-inch main, furnishing a supply for condensers and boiler feed.

The heating and power plant of the University contains nine boilers: two Root, one Sterling, four horizontal tubular, and two Babcock & Wilcox, aggregating eight hundred-horse power. These furnish additional opportunity for experiment. Tests are also made at the power plants, pumping station, and factories of the two cities.

The machine shop, foundry, and forge shop are located in Machinery Building.

The *machine shop* contains one twenty-seven inch by twelve-foot bed F. E. Reed & Co. engine lathe; twelve engine lathes of from twelve to twenty-inch swing; two ten-inch speed lathes; one centering lathe; one fifteen-inch Gould and Eberhardt shaper; one fifteen-inch Hendey shaper; one No. 3 Brown and Sharpe plain milling machine; one Brainard universal milling machine; one twenty by twenty-inch by five-foot Putnam planer; one thirty by thirty-inch by eight-foot G. A. Gray & Co. planer; one No. 2 improved Brown and Sharpe universal grinding machine; one Brown and Sharpe cutter and reamer grinder; one twenty-four inch drill press; one twenty-inch drill press; one sensitive drill press; one water emery tool grinder; one center grinding machine; one Stover power hack saw; complete sets of United States standard taps and dies; drills,
arbors, reamers, gear and milling cutters, caliper gauges, calipers, scales, and other small tools.

The wood shop occupies the second floor of the Engineering Laboratory, and contains twenty-six improved woodworking benches, fourteen of which are fitted with Wyman and Gordon patent vises; one thirty-four-inch F. H. Clement and Co. band saw; one thirty-six-inch Yerkes and Finan band saw; one twenty-inch Clement and Co. wood planer; one J. A. Fay and Co. jig saw; one J. A. Fay and Co. jointer; eight ten-inch wood lathes; one eighteen-inch pattern-maker's lathe; one No. 4 E. Fox trimmer, together with a complete equipment of small tools.

The foundry occupies a room 48 by 48 feet in the Metal Shops, and is equipped with a twenty-four-inch Whiting patent cupola, a core oven, and the necessary sand, ladles, and flasks for making castings. A No. 7 Buffalo steel pressure fan furnishes blast for the cupola.

The forge shop occupies a room 36 by 48 feet in the Metal Shops, and contains ten latest improved Buffalo down-draft forges. Blast is furnished these forges by a No. 5 Sturtevant pressure blower, and all gases of combustion are exhausted under ground by means of a No. 9 Sturtevant exhaust fan. The shop is also equipped with all necessary small tools.

Course of Instruction

Required for the Degree of B. S. in Mechanical Engineering

First Year

1. Advanced Algebra (Math. 2); Elements of Drafting and Sketching (Drawing, Gen. Eng’g 1 and 4); French 5, or German 5, or English 1 and 2; Shop Practice (Mech. Eng’g 1); Military 1, 2.

2. Trigonometry (Math. 4); Descriptive Geometry (Drawing, Gen. Eng’g 2); French 5, or German 5, or English 1 and 2; Shop Practice (Mech. Eng’g 1); Military 1, 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry and Lettering (Drawing, Gen. Eng’g 2 and 3); French 5, or German 5, or English 1 and 2; Shop Practice (Mech. Eng’g 1); Military 2.
SECOND YEAR

1. Differential Calculus (Math. 7); Elements of Machine Design (Mech. Eng’g 4); Shop Practice (Mech. Eng’g 2); Physics 1 and 3; Rhetoric 2; Military 2.
2. Advanced Analytical Geometry (Math. 8); Elements of Machine Design (Mech. Eng’g 4); Shop Practice (Mech. Eng’g 2); Physics 1 and 3; Rhetoric 2; Military 2.
3. Integral Calculus (Math. 9); Elements of Machine Design (Mech. Eng’g 4); Shop Practice (Mech. Eng’g 2); Physics 1 and 3; Rhetoric 2; Military 2.

THIRD YEAR

1. Analytical Mechanics (Theo. and Appl’d Mech. 1); Mechanism (Mech. Eng’g 5); Chemistry 1; Shop Practice (Mech. Eng’g 3).
2. Resistance of Materials (Theo. and Appl’d Mech. 2); Steam Engines and Boilers (Mech. Eng’g 6); Chemistry 16; Shop Practice (Mech. Eng’g 3).
3. Hydraulics (Theo. and Appl’d Mech. 3); Dynamo-Electric Machinery (Elect. Eng’g 1); Surveying (Civil Eng’g 10); Mechanical Laboratory (Mech. Eng’g 3).

FOURTH YEAR

1. Thermodynamics (Mech. Eng’g 7); Steam Engine Design and Valve Gears (Mech. Eng’g 11); Mechanical Laboratory (Mech. Eng’g 12); Seminary; Thesis.
2. Mechanics of Machinery (Mech. Eng’g 8); Advanced Machine Design (Mech. Eng’g 9); Mechanical Laboratory (Mech. Eng’g 12); Seminary; Thesis.
3. Mechanics of Machinery (Mech. Eng’g 8); Original Designs (Mech. Eng’g 9); Estimates (Mech. Eng’g 10); Seminary; Thesis.

MUNICIPAL AND SANITARY ENGINEERING

This course is designed for students desiring to make a specialty of city engineering work. It prepares for the varied duties of engineer of the department of public works of cities and includes instruction in modern methods of sanitation of cities.
Instruction is given by lectures, by text-book and seminary work, and by field, laboratory, and drafting work. The methods of training are intended to develop power to take up and solve new problems connected with municipal public works, as well as to design and to superintend the ordinary constructions. Surveying, structural materials, and structural design are taught as in the civil engineering course. The study of chemistry, botany, and bacteriology, so far as necessary to a comprehension of the questions involved in water supply and sewage disposal, are given. The facilities for this instruction are very good. The principles of the generation and transmission of electrical energy are given. Road engineering, water supply engineering, and sewerage receive special attention. A collection of drawings, plans, photographs, etc., has been added to the equipment.

Course of Instruction

Required for Degree of B. S. in Municipal and Sanitary Engineering

First Year

1. Advanced Algebra (Math. 2); Elements of Drafting and Sketching (Drawing, Gen. Eng’g 1 and 4); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1, 2; Military 1, 2.

2. Trigonometry (Math. 4); Descriptive Geometry (Drawing, Gen. Eng’g 2); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1, 2; Military 1, 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry and Lettering (Drawing, Gen. Eng’g 2 and 3); Shop Practice (Mech. Eng’g 1); French 5, or German 5, or English 1 and 2; Military 2.

Second Year

1. Differential Calculus (Math. 7); Land Surveying (Civil Eng’g 1); Physics 1 and 3; Rhetoric 2; Military 2.

2. Advanced Analytical Geometry (Math. 8); Drawing and Surveying (Civil Eng’g 2 and 3); Physics 1 and 3; Rhetoric 2; Military 2.
3. Integral Calculus (Math. 9); Drawing and Surveying (Civil Eng’g 2 and 3); Physics 1 and 3; Rhetoric 2; Military 2.

THIRD YEAR

1. Analytical Mechanics (Theo. and Appl’d Mech. 1); Railroad Engineering (Civil Eng’g 4); Chemistry 1.

2. Resistance of Materials (Theo. and Appl’d Mech. 2); Road Engineering (Mun. and San. Eng’g 1); Railroad Engineering (Civil Eng’g 4); Botany (Mun. and San. Eng’g 4); Steam Engines and Boilers (Mech. Eng’g 6, half term).

3. Hydraulics (Theo. and Appl’d Mech.3); Roofs (Arch. 5); Dynamo-Electric Machinery (Elect. Eng’g 1).

FOURTH YEAR

1. Water Supply Engineering (Mun. and San. Eng’g 2); Bacteriology (Mun. and San. Eng’g 5); Masonry Construction (Civil Eng’g 5); Thesis.

2. Sewerage (Mun. and San. Eng’g 3); Bridge Analysis (Civil Eng’g 8); Chemistry 3a; Thesis.

3. Tunneling (Civil Eng’g 9); Bridge Designing (Civil Eng’g 8); Chemistry 20; Thesis.

PHYSICS

The courses in this department are designed to furnish the student who intends to follow the profession of engineering, science teaching, or research in physical science, with such a knowledge of the phenomena and laws of physics as may be of greatest use in his chosen calling.

INSTRUCTION

The instruction is given by means of lectures and by practice in the laboratory. The work in the laboratory consists almost entirely of quantitative measurements made under the personal supervision of the instructors, with instruments of precision. An effort is made to have each student determine for himself the relations existing between the facts which he observes, in order to stimulate him to the formation of habits of sound thinking.
The rooms devoted to physics are in Engineering Hall. They include a large lecture room and cabinet, a large general laboratory and cabinet, several small laboratories, a constant-temperature room, a battery room, a work shop, and several private studies, laboratories, and offices.

The *lecture room* is in the form of an amphitheater, and is furnished with opera chairs provided with tablet arms. Piers at the lecture desk and in the center of the room make demonstrations with the most delicate apparatus possible. A permanent screen and rolling blinds, operated by a motor, facilitate illustration by lantern. The cabinet rooms adjoining the lecture room are stocked with apparatus suitable for illustration and demonstration, and are provided with conveniences for preparing apparatus for lectures.

The *general laboratory* is a large, well lighted, well ventilated room. It is supplied with tables, shelves, and sinks, arranged for general experimental work. The cabinet room adjoining this laboratory contains a full line of apparatus suitable for elementary experimental work, and also a line of high-grade apparatus intended for advanced experimental work and research.

The *small laboratories*, six in number, are on the first floor, and are abundantly provided with masonry piers, wall shelves, sinks, dark curtains, etc. These rooms are now equipped with apparatus for electrical measurements.

The *constant-temperature room* is on the first floor. It is isolated from the surrounding space by double masonry walls and double doors. It is arranged for such experiments as require a low, uniform temperature.

The *workshop* is near the small laboratories. It is equipped with machines and tools for the manufacture and repair of apparatus.

In addition to the preceding, there are a number of private studies and laboratories for the use of advanced students and instructors.

Electrical current is supplied to all the laboratories from the battery room, and also from the dynamo laboratory in University Hall.
THEORETICAL AND APPLIED MECHANICS

The courses in theoretical and applied mechanics are designed to meet the needs of students of the College of Engineering.

INSTRUCTION

Training is given in the principles of the subject and in the applications and methods used in engineering design and construction. The text-book work is supplemented by lectures and reading. Stress is placed on the solution of engineering problems involving discrimination in the use of data and in the statement of conditions. Experimental work and investigation in the laboratory of applied mechanics is a part of the regular instruction. Opportunity is also given for advanced laboratory investigation for thesis and special work.

EQUIPMENT

The Laboratory of Applied Mechanics is located in the Engineering Laboratory. It comprises the materials laboratory and the hydraulic laboratory.

The materials laboratory has an Olsen testing machine of 200,000 pounds capacity, arranged to test beams twenty feet long; a Riehle testing machine of 100,000 pounds capacity; a smaller apparatus for testing beams; a Riehle wire-testing machine, extensometers, and deflectometers; a stone-grinding machine, a rattler for abrasion tests of stone and brick, with other apparatus for making all necessary measurements and observations, etc. The laboratory is fitted up as a working laboratory where students may acquire such practice in experimental work as engineers are called upon to perform, as well as for the purpose of illustrating principles, and also for use in original investigation. The ordinary work includes testing metals, wooden beams, cement briquettes, stone, and brick.

The hydraulic laboratory contains elevated tank and stand-pipe, steam pump for giving high pressure, tanks for measuring flow of water, pressure gauges, meters, water motor, turbine, and other apparatus for experiments with orifices, weirs, pipes, nozzles, etc. Experiments are made in connection with the regular class instruction.
COLLEGE OF SCIENCE

FACULTY

Andrew S. Draper, LL.D., President.
Stephen A. Forbes, Ph.D., Dean, Zoölogy.
Thomas J. Burrill, Ph.D., LL.D., Botany.
Samuel W. Shattuck, C.E., Mathematics.
Charles W. Rolfe, M.S., Geology.
Donald McIntosh, V.S., Materia Medica.
Arthur W. Palmer, Sc.D., Chemistry.
Frank F. Frederick, Art and Design.
Samuel W. Parr, M.S., Applied Chemistry.
David Kinley, Ph.D., Economics and Sociology.
Arnold Tompkins, A.M., Pedagogy.
George W. Myers, M.I., Mathematics.
Henry E. Summers, B.S., Physiology and Vertebrate Anatomy.
Edgar J. Townsend, Ph.M., Mathematics.
Evarts B. Greene, Ph.D., History.
Katharine Merrill, A.B., English.
William O. Krohn, Ph.D., Psychology.
Harry S. Grindley, Sc.D., Chemistry.
T. Arkle Clark, B.L., Rhetoric.
Herman S. Piatt, A.M., French.
Arthur H. Daniels, Ph.D., Philosophy.
Fred A. Sager, B.S., Physics.
Charles W. Tooke, A.M., Political Science.
George D. Hammond, A.B., History.
William E. Sanford, Ph.C., Secretary, Pharmacy.
Frank Smith, A.M., Zoölogy.
Ralph P. Smith, Ph.B., German.
Helen E. Butterfield, M.I., Rhetoric.
George P. Clinton, M.S., Botany.
AIMS AND SCOPE

The College of Science is based upon the idea that the methods of science and the branches of study to which those methods are applicable present a subject matter and a discipline ample for the purposes of a liberal education, and that an education so derived differs materially in character and value from one whose sources are mainly literary. This College is distinguished in general from the technical colleges of the University by the fact that its choice of subjects is not limited by practical ends, and from the College of Literature and Arts by the predominance, in its courses and requirements, of the strictly scientific subjects. It is assimilated to the latter, however, by the liberal elections from the literary courses permitted to students who have satisfied its demands as to scientific work, and by the special courses in science open to election by students from the companion college.

It affords an opportunity for the study of the natural, physical, mathematical, and mental sciences, and of economic, sociological, and philosophical subjects, either as specialties or as the substance of a general education. The candidate for graduation may take a year each in any four of the principal subjects of this College, with a considerable amount of language, literature, and general study; he may concentrate his major work on any one of the several subjects in which major courses are offered; or he may adopt any program of concentration of his major work intermediate between these extremes. The subjects presented in this College are accordingly arranged in four groups—chemical, mathematical, natural science, and philosophical—each characterized by the predominant importance and development of the subjects indicated by its name. The studies of each group are again divided into
required and elective subjects, and the latter are further subdivided into three lists, A, B, and C. All the required subjects are necessary to graduation in the group of studies specified; those of the elective lists A and B are open to election, restricted only by certain general requirements, varying in the different groups, regarding the amount and distribution of the work to be done on them; and those of list C are open to election unconditionally.

It is the purpose of this system of classification and requirement to permit large liberty of choice with respect both to main lines of study and to associated or secondary subjects, and at the same time so to guide the student's elections that his course of study shall always contain a central core or axis of closely articulated major work. Preference is further given by this means to those minor subjects most important because of their relations to the major work elected.

The only undergraduate degree given in this College is that of Bachelor of Science. Forty* full term-credits for University studies are required for graduation, three of which may be earned by investigation work, the results of which are to be presented in the final thesis. Credit will be given for fractions of courses of instruction in exceptional cases only, by vote of the College faculty.

EQUIPMENT

Laboratories.—The College of Science occupies two of the main University buildings—the Chemical Laboratory and Natural History Hall—together with several rooms in University Hall assigned to the mathematical department, and to some of the departments of the philosophical group. The natural history museum is also in University Hall.

The laboratory and library facilities of this College have been acquired with primary reference to the needs of the undergraduate student, and are scarcely surpassed, for their purpose, in grade and completeness, among American universities. The graduate student likewise finds here an ample equipment, material, and opportunity for independent investigation in several departments of study, notably in those covered by the operations of the State Laboratory of Natural History and of the State Entomologist's office.

*Forty-one in the chemical group.
Apparatus.—A detailed description of apparatus will be found under each department of instruction.

THE CHEMICAL GROUP

AIMS

The purposes of the chemical group may be stated under three heads: 1, General; 2, Technological; and 3, Pharmaceutical.

1. Provision is made for such students as desire to direct their attention to the purely scientific side of the subject, either as part of a general education or with the view of preparing themselves to become teachers of the physical sciences or investigators in the various branches of pure chemistry.

2. The constantly growing demand for chemical knowledge and skill in the industrial world is here recognized and provided for. Ample opportunities are offered to those who wish to follow work along technological lines, special attention being given to the underlying chemical principles and their applications in the various industries.

3. Courses in pharmacy provide on the one hand for those who expect to engage in the ordinary practice of the pharmacist and druggist, and on the other, for such as wish to prepare in a more thoroughly scientific manner for the work of the investigating and manufacturing pharmacist.

EQUIPMENT

Laboratories.—The chemical building is 75 by 120 feet and four stories high, including basement and mansard. The basement contains the water survey laboratory and rooms for storage, dispensing, and for work in assaying and metallurgical chemistry. The first floor has a lecture room which seats 150; a laboratory for general chemistry and qualitative analysis, which accommodates 150 students; and a large private laboratory, and a store room. The second floor has laboratories for quantitative analysis, organic chemistry, a balance and reading room, a room for the special operations of physical chemistry, two private laboratories, a store room, and a small lecture room. The third floor has a laboratory for gas analysis, pharmacy and prescription rooms, a chemical museum, apartments for photography, a small lecture room, and the chemical laboratory of the Agricultural Experiment Station.
Apparatus.—These laboratories are amply furnished with all the modern conveniences and supplies for the various lines of work in pure and applied chemistry and pharmacy.

The apparatus for general use includes twenty-four analytical balances of Sartorius's and Becker's make, a large platinum retort for making hydrofluoric acid, Geissler's mercurial air pumps, Soleil-Scheibler's saccharimeter, a large Landolt's polariscope, Hofmann's, and Lepsius's apparatus for lecture demonstrations, complete sets of apparatus for gas analysis, spectrosopes, etc.

A very important feature of the equipment consists of the chemical library which, in addition to all the modern standard chemical texts, dictionaries, and encyclopedias, includes complete sets of nearly all the more important chemical journals, especially the German and the English. The current numbers of many others are regularly received.

CLASSIFICATION OF SUBJECTS

Prescribed

1. Chemical.—General Elementary Chemistry (Chem. 1); 1 credit.
 Descriptive Inorganic Chemistry (Chem. 2); 1 credit.
 Elements of Organic Chemistry (Chem. 4); 1 credit.
 Organic Chemistry (Chem. 9); 2 credits.
 Qualitative Analysis (Chem. 3a, 3b); 2 credits.
 Quantitative Analysis (Chem. 5a, 5b); 2 credits.
 Seminary (Chem. 19); 2 credits.

2. General.—Advanced Algebra (Math. 1, 2); 1 credit.
 German 1, 2, 5, 6; 5 or 6 credits.*
 Military 1, 2; 2 credits.
 Physics 1, 3; 3 credits.
 Rhetoric 2; 2 credits.
 Trigonometry (Math. 3 or 4); 1 credit.

Electives

List A (Chemical)

Advanced General Chemistry (Chem. 7); 1, 2, or 3 credits.
Agricultural Chemistry (Chem. 13); 2 credits.

*This requirement may be satisfied by courses 5 and 6, or by course 6, preceded by four terms of 1 and 2.
Chemical Technology (Chem. 6); 1 credit.
Iron and Steel Analysis (Chem. 8); 1 credit.
Industrial Chemistry (Chem. 17); 1 credit.
Metallurgy (Chem. 14); 1 credit.
Metallurgical Analysis and Assaying (Chem. 15); 1 credit.
Quantitative Analysis (Chem. 5c); 1 credit.
Sanitary Analysis (Chem. 10); 1 credit.
Special Courses (Chem. 18, a, b, c, d) \(\frac{1}{6} \) to \(5\frac{2}{3} \) credits.
Theoretical Chemistry (Chem. 12); 1 credit.
Theorist and Investigations (Chem. 11); 2 credits.

List B (General)

Botany 6, 1; 1 or 3 credits.
Electrical Engineering 1; 1 credit.
English 1 to 9; 9 credits.
Greek 1 to 3; 3 credits.
Geology 4, 1; 1, 2, or 3 credits.
Latin 1 to 3; 3 credits.
Mathematics 2 to 9; 3 or 4 credits.
Mechanical Engineering 1, 2, and 6; 1 or 2 credits.
Mineralogy 1, 2; 1 or 3 credits.
Physics 4 to 7; 11 credits.
Physiology 4, 1; 1 or 2 credits.
Theoretical and Applied Mechanics 1 to 5; 1 to 3 credits.
Zoology 3, 1; 2 or 3 credits.

List C

Anthropology 1; 1 credit.
Art and Design 5; 1 credit.
Astronomy 4; 1 credit.
Botany 2; 1 credit.
Chemistry (advanced work); 1 to 3 credits.
Economics 1 to 8; 2 to 6 credits.
French 1 or 5, 2; 3 or 6 credits.
German 2; 1 credit.
History 1, 2; 1\(\frac{1}{2} \) to 3 credits.
Materia Medica 1; 2 credits.
Meteorology 1; \(\frac{1}{2} \) credit.
Military 3.
Pedagogy 1 to 7; 3 credits.
CHEMICAL GROUP

Philosophy 1 to 8; \(\frac{2}{3} \) to 7 credits.
Political Science 1 to 9; \(\frac{2}{3} \) to 9\(\frac{2}{3} \) credits.
Psychology 1 to 7, 9; 1 to 8 credits.

REQUIREMENTS FOR GRADUATION

In order to graduate in chemistry, the candidate must have completed all the required courses (25 credits), and must have at least three credits additional for subjects to be chosen from the chemical list A, of electives. For the thirteen remaining credits he must choose six subjects from list B and seven from lists B and C. He must make, in all, forty-one full term-credits, and present an acceptable thesis.

Special exceptions as to the required number of chemical options may be made for those who desire to prepare themselves as teachers of chemistry rather than as technical chemists.

COURSES OF INSTRUCTION BY YEARS AND TERMS

The following program of prescribed courses and chemical electives shows the terms in which the principal studies of the chemical group must be taken. The prescribed studies, which are in italics, must be taken also in the year and term indicated.

FIRST YEAR

1. Advanced Algebra (Math. 1 or 2); General Introductory Chemistry (Chem. 1); German 5 or 1; Military 1, 2.

2. Descriptive Inorganic Chemistry (Chem. 2); German 5 or 1; Military 1, 2; Trigonometry (Math. 3 or 4); Qualitative Analysis (Chem. 3a).

3. Analytical Geometry (Math. 6); Descriptive Inorganic Chemistry (Chem. 2); Elements of Organic Chemistry (Chem. 4); German 5 or 1; Military 2; Qualitative Analysis (Chem. 3b).

SECOND YEAR

1. German 2; Military 2; Physics 1, 3; Quantitative Analysis (Chem. 5a).

2. Advanced General Chemistry (Chem. 7); Agricultural Chemistry (Chem. 13); Chemical Technology (Chem. 6); German 6; Military 2; Physics 1, 3; Quantitative Analysis (Chem. 5b).
3. Advanced General Chemistry (Chem. 7); Agricultural Chemistry (Chem. 13); Chemical Technology (Chem. 6); German 6; Iron and Steel Analysis (Chem. 8); Military 2; Quantitative Analysis (Chem. 5c); Physics 1, 3.

THIRD YEAR

1. Advanced General Chemistry (Chem. 7); Metallurgical Analysis and Assaying (Chem. 15); Metallurgy (Chem. 14); Rhetoric 2; Seminary (Chem. 19).

2. Advanced General Chemistry (Chem. 7); Organic Chemistry (Chem. 9); Rhetoric 2; Seminary (Chem. 19); Theoretical Chemistry (Chem. 12).

3. Advanced General Chemistry (Chem. 7); Organic Chemistry (Chem. 9); Rhetoric 2; Seminary (Chem. 19); Theoretical Chemistry (Chem. 12).

FOURTH YEAR

1. Advanced General Chemistry (Chem. 7); Metallurgy (Chem. 14); Metallurgical Analysis and Assaying (Chem. 15); Sanitary Analysis (Chem. 10); Seminary (Chem. 19); Special Analytic Chemistry (Chem. 18).

2. Advanced General Chemistry (Chem. 7); Seminary (Chem. 19); Special Courses (Chem. 18); Thesis and Investigations (Chem. 11).

3. Advanced General Chemistry (Chem. 7); Seminary (Chem. 19); Special Courses (Chem. 18); Thesis and Investigations (Chem. 11).

APPLIED CHEMISTRY AND ENGINEERING

To meet the needs of those who wish to fit themselves for such work as devolves upon the managers of establishments in which the operations depend upon chemical processes, a four years' course in chemistry with related engineering subjects has been arranged.

REQUIREMENTS FOR GRADUATION

The requirements for graduation are not varied from those already indicated on p. 89, except that the electives to be chosen from lists B and C must include certain engineering subjects, as follows: a minimum of three subjects shall be
CHEMICAL GROUP

chosen from those listed under "Mathematics" in the general description of courses; a minimum of six subjects shall be taken from those listed under "Mechanical Engineering," and a minimum of two subjects from those listed under "Mechanics, Theoretical and Applied." A chemical thesis is required and completion of the work leads to the degree of Bachelor of Science in Chemistry and Engineering.

Courses of Instruction by Years and Terms

The prescribed and chemical electives, together with the necessary engineering subjects to meet the above conditions, are indicated below. Subjects must be taken in the term indicated, and those in italics must be taken in the year indicated.

First Year

1. Advanced Algebra (Math. 1, 2); Drawing, Gen'l Eng'g, 1, 4; General Chemistry (Chem. 1); German 1, 5; Military 1, 2.

2. Descriptive Inorganic Chemistry (Chem. 2); German, 1, 5; Military, 1, 2; Qualitative Analysis (Chem. 3a); Trigonometry (Math. 3, 4).

3. Analytical Geometry (Math. 6); Descriptive Inorganic Chemistry (Chem. 2); Elements of Organic Chemistry (Chem. 4); German, 1, 5; Qualitative Analysis (Chem. 3b); Military, 2.

Second Year

1. Differential Calculus (Math. 7); Military 2; Physics 1, 3; Quantitative Analysis (Chem. 5a); Rhetoric 2; Shop Practice (Mech. Eng’g 1).

2. Advanced Analytical Geometry (Math. 8); German 6; Military 2; Physics 1, 3; Quantitative Analysis (Chem. 5b); Rhetoric 2; Shop Practice (Mech. Eng’g 1).

3. German 6; Integral Calculus (Math. 9); Iron and Steel Analysis (Chem. 8); Military 2; Physics 1, 3; Rhetoric 2; Shop Practice (Mech. Eng’g 1).

Third Year

1. Analytical Mechanics (Theo. and Appl’d Mech. 1 or 4); Metallurgy (Chem. 15); Metallurgical Analysis and Assaying
(Chem. 14); Shop Practice (Mech. Eng’g 2); Special Analytical Chemistry (Chem. 18); Seminary (Chem. 19).

2. Chemical Technology (Chem. 6); Industrial Chemistry (Chem. 17); Organic Chemistry (Chem. 9); Resistance of Materials (Theo. and Appl’d Mech. 2 or 5); Seminary (Chem. 19); Steam Engines and Boilers (Mech. Eng’g 6); Shop Practice (Mech. Eng’g 2).

3. Chemical Technology (Chem. 6); Electrical Engineering 1; Hydraulics (Theo. and Appl’d Mech. 3); Organic Chemistry (Chem. 9); Special Analytical Chemistry (Chem. 18); Seminary (Chem. 19); Shop Practice (Mech. Eng’g 2).

FOURTH YEAR

1. Chemistry 14, 15, 18; Thermodynamics (Mech. Eng’g 7).
2. Chemistry 6, 12, 17, 18; Steam Engines and Boilers (Mech. Eng’g 6); Thesis and Investigation (Chem. 11).
3. Chemistry 6, 12, 18; Civil Engineering 1; Thesis and Investigation (Chem. 11).

PHARMACY

INSTRUCTION

The instruction is conducted by means of lectures, textbooks, and laboratory work. The laboratory practice consists in the compounding of the galenicals, in pharmaceutical assaying, and in prescription work. The requirements of the United States Pharmacopoeia are always kept in mind and the student must conform to its rules; he is, therefore, held responsible for the purity and strength of his preparations and for the accuracy of his work.

EQUIPMENT

The department of pharmacy occupies a part of the chemical building, and is in direct connection with the chemical laboratories. It has the use of the very complete supply of apparatus belonging to the chemical department, and is also provided with apparatus for the special work in pharmacy. All the various forms of percolators, pill machines, suppository moulds, tablet moulds, etc., are at the disposal of the student.

A drug room is arranged as nearly like the drug shop as is possible, and contains a large prescription desk supplied with
a complete set of apparatus and materials necessary for the compounding of prescriptions. It is designed to give the student as much practical work as is possible in a technical school. Over two hundred crude drugs make up a part of the equipment for the study of pharmacognosy.

Several of the leading journals of pharmacy are taken and these, together with the complete library of chemical and pharmaceutical works, afford excellent opportunities for examining the literature bearing on the science of pharmacy.

Requirements for Graduation

With Degree of B. S. in course of Chemistry and Pharmacy

The general requirements are the same as in the chemical course proper; more specifically there are required:

- Botany 1; 1 to 3 credits.
- Botany 7; 1 credit.
- Chemistry 1, 2, 3, 4, 5a, 9; 8 credits.
- German 5, 6; 5 credits.
- Mathematics 1, 3; 2 credits.
- Materia Medica 1; 2 credits.
- Military 1, 2; 2 credits.
- Pharmacy 1, 2, 3, 4, 5; 8 credits.
- Pharmaceutical Assaying (Pharm. 5); 1 credit.
- Pharmaceutical Preparations (Pharm. 2); 2 credits.
- Pharmaceutical Technology (Pharm. 4); 2 credits.
- Pharmacognosy (Pharm. 3); 2 credits.
- Physics 1, 3; 3 credits.
- Rhetoric 2; 2 credits.
- Thesis and Investigation (Chem. 11); 2 credits.

The subjects of the four remaining credits which are required for graduation may be selected from chemical electives, lists A, B, and C.

Courses of Instruction by Years and Terms

The courses mentioned in the following list must be taken in the indicated year and term:

First Year

1. *Advanced Algebra* (Math. 1); *Chemistry, General Introductory* (Chem. 1); *German 5*; *Military 1, 2.*
2. Descriptive Inorganic Chemistry (Chem. 2); German 5; Military 1, 2; Qualitative Analysis (Chem. 3a); Trigonometry (Math. 3).

3. Descriptive Inorganic Chemistry (Chem. 2); Elements of Organic Chemistry (Chem. 4); German (5); Military 2; Qualitative Analysis (Chem. 3b).

SECOND YEAR

1. Botany 1; Pharmacy 1; Quantitative Analysis (Chem. 5a); Rhetoric 2.

2. Botany 1, 7; German 6; Pharmaceutical Preparations (Pharm. 2); Quantitative Analysis Chem. 5b; Rhetoric 2.

3. Botany 1, 7; German 6; Pharmaceutical Preparations (Pharm. 2); Quantitative Analysis (Chem. 5c); Rhetoric 2.

THIRD YEAR

1. Materia Medica 1; Pharmacognosy (Pharm. 3) Physics 1, 3; Seminary (Chem. 19).

2. Materia Medica 1; Organic Chemistry (Chem. 9); Physics (1, 3); Seminary (Chem. 19).

3. Organic Chemistry (Chem. 9); Pharmaceutical Assaying (Chem. 5); Physics (1, 3); Seminary (Chem. 19).

FOURTH YEAR

1. Elective; Pharmaceutical Technology (Pharm. 4); Seminary (Chem. 19).

2. Elective; Pharmaceutical Technology (Pharm. 4); Investigation and Thesis (Chem. 11); Seminary (Chem. 19).

3. Elective; Pharmacognosy (Pharm. 3b); Investigation and Thesis (Chem. 11); Seminary (Chem. 19).

SHORT COURSE IN PHARMACY

A briefer course in pharmacy is offered, covering two years. The subjects are all prescribed and are as follows:

FIRST YEAR

1. Botany 1; General Introductory Chemistry (Chem. 1); Military 1, 2; Pharmacy 1; Pharmacognosy (Pharm. 3).

2. Descriptive Inorganic Chemistry (Chem. 2); Military 1, 2; Pharmaceutical Botany (Bot. 7); Pharmaceutical Preparations (Pharm. 2); Qualitative Analysis (Chem. 3a).
3. Military 2; Organic Chemistry (Chem. 4); Pharmaceutical Botany (Bot. 7); Pharmaceutical Preparations (Pharm. 2); Qualitative Analysis (Chem. 3b).

SECOND YEAR

1. Advanced work in Chemistry or Pharmacy; Materia Medica 1; Military 2; Pharmaceutical Technology (Pharm. 4); Quantitative Analysis (Chem. 5a).

2. Advanced work in Chemistry or Pharmacy; Materia Medica 1; Military 2; Pharmaceutical Technology (Pharm. 4); Quantitative Analysis (Chem. 5b).

3. Advanced work in Chemistry or Pharmacy; Military 2; Pharmaceutical Assaying (Pharm. 5); Pharmacognosy (Pharm. 3b); Thesis.

By an earnest prosecution of the studies laid out in this course the student may thoroughly prepare himself for the examinations required by the State Board of Pharmacy for registration as a pharmacist.

The work outlined above leaves no time during the college year for the drug store practice required by law for a registered pharmacist. This practice must, therefore, be had at other times, preferably before the college course.

DESCRIPTION OF DEPARTMENTS

Chemistry

The chemical offerings include courses of instruction in general elementary, inorganic, organic, physical, and theoretical chemistry, and several lines of qualitative and quantitative analysis. [See under Chemistry in Description of Courses.]

The first term is devoted to the consideration of the fundamental principles of chemistry, the purpose being to afford as thorough an introduction to chemical science as is practicable in the time alloted.

In succeeding courses the work becomes more special in character, but the required chemical subjects constitute a backbone of scientific preparation which provides opportunity for a thorough grounding in the principles and laws of chemistry; while, by proper selection from the numerous electives one may specialize along any of the lines of analytical or
applied chemistry, or pharmacy, or may further develop his knowledge of pure chemistry.

In order that an acquaintance with chemical literature may be had, and to keep pace with the advances in chemistry, students of the third and fourth years are required to take part in the chemical seminary in which the work consists chiefly of reviews and discussions of assigned articles in current numbers of the various journals.

Two terms' work in the fourth year are devoted to the investigation of some chemical problem. This practice both furnishes an opportunity to specialize along some chosen line and serves as an introduction to the methods of chemical research.

To students who are preparing themselves to become teachers of science, an opportunity is offered for the acquisition of some experience in supervising laboratory practice in Elementary Chemistry. The work will include criticism and discussion of methods, and application of pedagogical principles and will be conducted with the cooperation of the department of pedagogy.

APPLIED CHEMISTRY

In this department there are offered ten separate courses in technological subjects. These require as preliminary work the seven general and analytical courses from 1 to 5b inclusive. They may be further supplemented by special advanced work along some chosen line. For special description of courses, see under Chemistry in the Description of Courses. Frequent visits are made to metallurgical and other works employing chemical processes. Seminary work along general and technical lines is conducted for two years of the course. The purpose of the course is to offer the largest possible opportunity for equipment as technical and manufacturing chemists, superintendents, etc., or as chemical engineers in the work of supervising or planning the installation of metallurgical or other chemical plants.

PHARMACY

Two courses in pharmacy are offered, one covering two years and the other, which leads to the degree of Bachelor of Science, extending over four years. The former is designed
particularly for those who intend engaging in pharmacy as a business. The four years' course includes all the practical work of the shorter course, but extends farther, and furnishes a more complete training in the chemistry of pharmacy. The intention is to offer a thorough scientific training to students who desire to become pharmaceutical chemists, or chemists to the medical profession, to engage in manufacturing or to devote themselves to scientific investigation in pharmacy.

THE MATHEMATICAL GROUP

INSTRUCTION

The mathematical group of studies includes the entire offering of the University courses in pure mathematics, physics, and astronomy.

The instruction in pure mathematics has for its object the promotion of habits of mental concentration and continuity of thought, the development of the capacity to form and combine abstract conceptions and the cultivation of deductive reasoning, and to give such mathematical knowledge as is required for the study of the professional work in the College of Engineering. For this last purpose the greater part of the time is necessarily taken up with the theory and its application to geometrical magnitudes. It is hoped that the course thus planned will meet the requirements of those who need mathematics as a tool; of those who wish to fit themselves for instructors, and of those who study the science for the love of it.

Parallel with the pure mathematics of the junior and senior years, two lines of associated work in applied mathematics—physical and astronomical—are offered, either of which may be, and one of which must be, taken by the student wishing to graduate in the studies of the mathematical group. One of these lines leads from the physics of the sophomore year through the mathematical theory of electricity and magnetism, heat, light, and sound; and the other through surveying and mechanics to celestial mechanics, and to general and mathematical astronomy. Courses 10 to 18 count as graduate work for all students except those taking their first degree in mathematics.
CLASSIFICATION OF SUBJECTS

Prescribed

General Engineering Drawing 1, 4; 1 credit.
General Engineering Drawing 2, 5; 2 credits.
Mathematics 2 (Advanced Algebra); 1 credit.
Mathematics 4 (Trigonometry); 1 credit.
Mathematics 6 (Analytical Geometry); 1 credit.
Mathematics 7 (Differential Calculus); 1 credit.
Mathematics 8 (Advanced Analytical Geometry); 1 credit.
Mathematics 9 (Integral Calculus); 1 credit.
Mathematics 10 (Theory of Equations); 1 credit.
Mathematics 11 (Theory of Determinants); 1 credit.
Mathematics 12 (Theory of Invariants); 1 credit.
Mathematics 13 (Theory of Functions); 1 credit.
Mathematics 14 (Method of Least Squares); $\frac{3}{2}$ credit.
Mathematics 15 (Seminary and Thesis); 1½ credits.
Mathematics 16 (Differential Equations); $\frac{4}{3}$ credit.
Mathematics 17 (Geometry of Space); 1 credit.
Mathematics 18 (Higher Plane Curves); 1 credit.
German 1, 2, 5, 6, or French 1, 2, 5; 5 or 6 credits.
Military Science, 1, 2; 2 credits.
Physics 1; 2 credits.
Rhetoric 2; 2 credits.

Elective

List A (Astronomical)

Astronomy (Descrip.); 1 credit; (Mathemat.); 1½ credit.
Civil Engineering 10; 1 credit.
Mechanics (Celestial); 1 credit.
Mechanics (Theoretical and Applied 1); 1 credit.

List B (Physical)

Physics 1, 3; 3 credits.
Physics 5 (Theory of Electricity and Magnetism); 3 credits.
Physics 6 (Theory of Light, Heat, and Sound); 3 credits.

List C

Anthropology 1; 1 credit.
Botany 1 or 6; 1 or 3 credits.
MATHEMATICAL GROUP

Chemistry 1, 3a, 3b, or 4; 1 or 3 credits.
Economics 1 to 8; 2 to 6 credits.
English 1, 2; 3 credits.
French 1, 5, 2, or German 1, 5, 2, 6; 6 credits.
Geology 1, 3, 4; 1, 2, or 3 credits.
History 1, 2; 1 or 3 credits.
Latin 1, 2, 3; 3 credits.
Meteorology 1; © credits.
Mineralogy 1, 2; 1 or 3 credits.
Pedagogy 1 to 7; 1 to 4 credits.
Philosophy 1 to 8; 1 to 4 credits.
Physiology 1 or 4; 1 or 3 credits.
Political Science 1 to 9; 3 to 9% credits.
Psychology 1 to 8; 1 to 4 credits.
Zoology 1, 8, 10; 1, 2, or 3 credits.

REQUIREMENTS FOR GRADUATION

To graduate as a Bachelor of Science in the mathematical studies, it is necessary for the student to complete the required subjects of this group, together with those of either the astronomical or the physical list (A or B) of electives, and to present an acceptable thesis. The necessary number of forty full term-credits for University studies may then be made up by election from lists A, B, and C.

COURSES OF INSTRUCTION BY YEARS AND TERMS

The studies of the mathematical group may best be taken according to the following outlines of courses in mathematics and physics, and in mathematics and astronomy respectively.*

The electives provided for in the junior and senior years may be readily chosen by a reference to the preceding lists of electives and to the scheme or table of subjects by years and terms.

Course in Mathematics and Physics

FIRST YEAR

1. Advanced Algebra (Math. 3); Engineering Drawing 1, 4; French 1, 5, or German 5; Military 1, 2; Rhetoric 2.

*The two courses are identical for the freshman and sophomore years.
2. Trigonometry (Math. 4); Descriptive Geometry and Lettering (Drawing, Gen’l Eng’g 2, 3); French 1, 5, or German 5; Military 1, 2; Rhetoric 2.

3. Analytical Geometry (Math. 6); Descriptive Geometry (Drawing, Gen’l Eng’g 2); French 1, 5, or German 5; Military 2; Rhetoric 2.

SECOND YEAR

1. Differential Calculus (Math. 7); Physics 1, 3; French 2 or German 2; Military 2.

2. Advanced Analytical Geometry (Math. 8); French 2, or German 2, 6; Military 2; Physics 1, 3.

3. Integral Calculus (Math. 9); French 2, or German 2, 6; Military 2; Physics 1, 3, or Surveying.

THIRD YEAR

1. Theory of Equations (Math. 10); Physics 5; Electives.

2. Theory of Determinants (Math. 11); Physics 5; Electives.

3. Theory of Invariants (Math. 12); Physics 5; Electives.

FOURTH YEAR

1. Theory of Functions (Math. 13); Method of Least Squares (Math. 14); Physics 6; Mathematical Seminary and Thesis (Math. 15); Electives.

2. Differential Equations (Math. 16); Geometry of Space (Math. 17); Physics 6; Mathematical Seminary and Thesis (Math. 15); Electives.

3. Differential Equations (Math. 16); Higher Plane Curves (Math. 18); Physics 6; Mathematical Seminary and Thesis (Math. 15); Electives.

COURSE IN MATHEMATICS AND ASTRONOMY

The freshman and sophomore years are the same as in the preceding course.

THIRD YEAR

1. Theory of Equations (Math. 10); Mechanics, Theo. and App. 1; Electives.

2. Theory of Determinants (Math. 11); Celestial Mechanics (Astron. 1); Electives.

3. Theory of Invariants (Math. 12); General Astronomy; Electives.
FOURTH YEAR

1. Theory of Functions (Math. 13); Method of Least Squares (Math. 14); Mathematical Astronomy; Mathematical Seminary and Thesis; Electives.

2. Differential Equations (Math. 16); Geometry of Space (Math. 17); Mathematical Astronomy; Mathematical Seminary and Thesis; Electives.

3. Differential Equations (Math. 16); Higher Plane Curves (Math. 18); Mathematical Astronomy; Mathematical Seminary and Thesis; Electives.

THE NATURAL SCIENCE GROUP

AIMS

The courses of the natural science group are especially intended:

1. To give a thorough liberal education with a basis in the objective sciences.

2. To prepare for the pursuit of specialties in zoology, entomology, physiology, botany, or geology, as a scientific career.

3. To lay in biological work and study a liberal foundation for a course in medicine.

4. To prepare for the teaching of the natural or physical sciences in high schools and colleges.

Special advantages are offered to graduate students, for whose work the museums, laboratories, and libraries, and the field and experimental equipment of the University and of the associated State Laboratory of Natural History, furnish an extraordinarily full provision. The University Biological Station, at Havana, is regarded as one of the University laboratories, and work done there by students may receive credit like work in any of the other laboratories.

CLASSIFICATION OF SUBJECTS

Prescribed

Art and Design 4; 2 credits.
Chemistry 1, 3a, and 3b or 4; 3 credits.
German 1, 2, 5, 6; 5 or 6 credits.*
Mathematics 1 to 6; 2 credits.

*This requirement may be satisfied by courses 5 and 6, or by course 6 preceded by four terms of 1 and 2.
Military Science 1, 2; 2 credits.
Rhetoric 2; 2 credits.

Elective

List A* (Major Courses)

Biology, General; 1 credit.
Botany 1 to 5; 3 to 6, or 9 credits.
Chemistry 5, 7, 9, 12; 3 credits.
Geology 1, 2; 2 to 6 credits.
Mineralogy 1, 2; 1, 2, or 3 credits.
Paleontology 1; 2 credits.
Physics 1, 3; 3 credits.
Physiology 1, 2, 3; 2, 3, or 7 credits.
Zoology 1, 2, 3, 4 to 7, 9; 2 to 9 credits.

List B (Minor Courses)

Botany 6; 1 credit.
Geology 4; 1 credit.
Physics 2; 1 credit.
Physiology 4; 1 credit.
Zoology 10; 1 credit.

List C (Miscellaneous)

Anthropology 1; 1 credit.
Art and Design 1; 1 credit.
Astronomy 4; 1 credit.
Economics 1 to 8; 2 to 8 credits.
English 1, 2, 5, 6; 3 or 6 credits.
French 1, 2, 5; 3 or 6 credits.
German 2; 1 credit.
History 1, 2, 3; 3 or 6 credits.
Mathematics 5 to 11; 4 credits.
Meteorology 1; ½ credit.
Pedagogy 1 to 8; 2 to 10 credits.
Pharmacology 2 credits.
Philosophy 1 to 8; 1 to 7 credits.
Political Science 1 to 9; ½ to 9½ credits.
Psychology 1 to 8; 1 to 9 credits.
Zoology 11; 1 credit.

*No number of credits in any subject will be accepted as major work other than the numbers specified against that subject in list A. Credit will not be given for both major and minor work in the same subject.
The major and minor courses in Lists A and B in this group are respectively the maximum offerings and the minimum requirements in the various subjects of these lists.

REQUIREMENTS FOR GRADUATION

In the natural science group a student may graduate from either a specialized or a general course.

A specialized course is one containing at least two years of major work in a single subject preceding the senior year, followed by an additional year of major work in that subject, and the writing of an acceptable thesis. No student may be enrolled in a specialized course without the permission of the head of the department in which he wishes to do his principal work; and each student who wishes to be so enrolled must specify the course he desires to enter not later than the beginning of his junior year. Only those students who pursue a specialized course shall be selected for fellowships, scholarships, and other similar University honors. A general course is one in which less than three years' work in any one line is required for graduation, and in which no thesis is required.

Students who specialize in geology or mineralogy may count all work done in those branches, and their credits in chemistry, in the list of credits required before the beginning of the senior year.

No student may graduate in natural science until he has completed all the required courses, has done at least nine terms' work on one major elective, or twelve terms' work on more than one such major (list A), and has taken at least minor courses in all the other electives in which such courses are offered (list B). The necessary number of forty full term-credits for University studies may be made up by additional elections from the three lists of electives, except that at least five of them must be chosen from list C.

COURSES OF INSTRUCTION BY YEARS AND TERMS

The following list of prescribed studies and major electives shows the terms in which the principal studies of the natural science group must be taken. The prescribed studies,
which are in *italics*, must be taken also in the year indicated. Students intending to graduate from a specialized course should begin the study of their special subject at the earliest time practicable.

FIRST YEAR

1. *Advanced Algebra* (Math. 1, 2); *Art and Design* 4; *Chemistry* 1; *Military* 1, 2; *Zoology* 10 11.
2. *Chemistry* 3a; *Military* 1, 2; *Trigonometry* (Math. 3, 4); *Zoology* 1, 2, 3.
3. *Art and Design* 4; *Chemistry* 3b, 4; *Entomology, Practical* (Zool. 8); *Military* 2, 3; *Zoology* 1, 2.

SECOND YEAR

1. *Botany* 1; *German* 5; *Military* 2, 3; *Mineralogy* 1; *Physics* 1, 3; *Zoology* 1, 3, 5, 10 11.
2. *Botany* 1; *Embryology* (Zool. 4); *Entomology* (Zool. 6); *Geology* 1; *German* 1, 5; *Military* 2, 3; *Physics* 1, 3; *Physiology* 1.
3. *Biology, General*, 1; *Botany* 1; *Entomology* (Zool. 6); *Geology* 1; *German* 5; *Military* 2, 3; *Physics* 1, 3; *Physiology* 1.

THIRD YEAR

1. *Bacteriology* (Bot. 2); *Botany* 3; *Entomology, Advanced* (Zool. 7); *Geology* 1; *German* 2; *Physiology* 2; *Rhetoric* 2; *Zoology* 1, 10 11.
2. *Botany* 3; *German* 6; *Military* 3; *Mineralogy* 2; *Paleontology* 1; *Physiology* 2; *Rhetoric* 2; *Zoology* 4 (Embryology), 5, 6 (Entomology), 7.
3. *Biology, General*; *Botany* 4; *German* 6; *Mineralogy* 2; *Paleontology* 1; *Physiology* 2; *Rhetoric* 2; *Zoology* 5, 6 (Entomology), 7, 8.

FOURTH YEAR

1. *Thesis* (Bot. 5; Geol. 2; Zool. 9).
2. *Thesis* (Bot. 5; Geol. 2; Physiol. 3; Zool. 9).
3. *Biology, General*; *Mineralogy* 2; *Paleontology* 1; *Thesis* (Bot. 5; Geol. 2; Physiol. 3; Zool. 9).
SUGGESTIONS AS TO CHOICE OF COURSES

Students wishing to take major courses in several biological subjects, with the intention of graduating in natural science without a thesis, should take the required subjects of the freshman year together with zoology 2; may follow this in the second year with botany 1, German, physics, and military, each throughout the year; may select for the junior year mineralogy 1, to be followed by geology 1, bacteriology or elementary entomology, embryology, general biology, German, minor physiology, and rhetoric 2, finishing geology 1 in the fall term of the senior year, and completing their course by selecting studies amounting to eight elective credits from the remaining subjects open to them. Numerous variations of this course may readily be arranged to the same general effect.

Those wishing to concentrate their major work in zoology only, should take courses 1, 4, and 5 in zoology, beginning with the second term of the freshman year; minor courses in physiology, physics, and botany, in the second year; mineralogy 1 and geology 4 in the third year; and anthropology 1, general biology, and thesis investigation during the senior year.

For a zoological course with principal reference to entomology, zoology 2 may be taken instead of 1, and followed by courses 6 and 7, with the omission of course 4 from the above list.

The student desiring to specialize in physiology should take zoology 3 and follow it with all the physiology offered, except course 4. His work may be otherwise like that suggested above for the zoological specialist.

A special course in botany may be made up on lines similar to those of the special zoological course by taking, instead of major zoology, the botanical courses 1 to 4 in the second and third years, preferably preceded by general biology 1 in the freshman year, and followed by botany 5 (thesis work).

Students who desire to make the most of the offerings in geology are advised to take chemistry in the freshman year, begin their mineralogy in the fall term of the sophomore year, take geology in the winter and spring terms of that year and the fall term of the junior year, take mineralogy 2, or paleontology 1 during the winter and spring terms of the junior year, and the remaining subjects together with thesis investigation (geology 2) during the senior year.
SPECIAL COURSES PRELIMINARY TO MEDICINE

Students desiring a course of study leading to a degree in natural science as a liberal preparation for a course in medicine are advised to take the list of studies required for graduation (16 credits), together with zoology 3, embryology (zoology 5), physiology 1 (or 1 and 2), general biology 2, botany 6, bacteriology (botany 2), physics 1, 3, mineralogy 1, geology 4, pharmacology 1, psychology 3, and logic (philosophy 8).

This course may be conveniently arranged as follows:

MAJOR COURSE

FIRST YEAR

1. Advanced Algebra (Math. 1); Art and Design 1; Chemistry 1; Military 1, 2.
2. Chemistry 3a; Military 1, 2; Trigonometry (Math. 3); Zoology 3.
3. Art and Design 2; Botany 6; Chemistry 4; Military 2.

SECOND YEAR

1. German 5; Military 2; Physics 1, 3; Zoology 3.
2. German 5; Military 2; Physics 1, 3; Physiology 1.
3. German 5; Military 2; Physics 1, 3; Physiology 1.

THIRD YEAR

1. Bacteriology (Bot. 2); French 5 or Physiology 2; German 2; Rhetoric 2.
2. French 5 or Physiology 2; Rhetoric 2; Zoology 4.
3. Biology, General; French 5 or Physiology 2; German 6; Rhetoric 2.

FOURTH YEAR

1. Pharmacology; Psychology 2.
2. Geology 4; Pharmacology; Botany 3.
3. Chemistry 20; Pharmacy 2; Philosophy 8.

For the benefit of those who are preparing for medicine but who cannot take more than a two years' course at the University, the following scheme of study is suggested:
MINOR COURSE

FIRST YEAR

1. Advanced Algebra (Math. 1); Art and Design 1; Chemistry 1; Military 1, 2.
2. Chemistry 3b; Military 1, 2; Trigonometry (Math. 2); Zoölogy 3.
3. Astronomy 4; Botany 6; Chemistry 4; Military 2.

SECOND YEAR

1. Bacteriology (Bot. 2); Military 2; Physics 1, 3; Zoölogy 3.
2. Embryology (Zoöl. 4); Military 2; Physics 1, 3; Physiology 1.
3. Biology, General; Military 2; Physics 1, 3; Physiology 1.

DESCRIPTIONS OF DEPARTMENTS

BOTANY

Seven courses of instruction are offered in this subject—five primarily intended to meet the wants of students making botanical work more or less a specialty, and the sixth occupying a single term, complete in itself, for students whose chief attention is given to other branches. Three to nine terms’ work constitutes a major course; that of the single term, course 6, a minor course. To a very large extent natural objects are studied rather than books, but constant endeavor is made to introduce students to pertinent existing literature. In the laboratory much use is made of the compound microscope, and special attention is given to its manipulation for best results, and to the preparation of objects. The seventh course is pharmaceutical botany.

EQUIPMENT

The botanical laboratories are: One of large size with full equipment of microscopes, microtomes, aquaria, models, charts, etc., for general work; one specially arranged and fitted up for bacteriological instruction and investigation, supplied with sterilizers, thermostats, microscopes, a full line of glassware, metal vessels, and chemicals; one adjoining the latter and used in connection with it for vegetable physiology, and having
attached a glazed structure, two stories in height, well adapted to facilitate experiments upon living plants and for the growth of specimens required in the laboratories. There are also provisions for private laboratory work by instructors. The department is furnished with a lecture room; a room for the herbarium and facilities for work in connection therewith; workrooms for the preparation of specimens and material; storage rooms for apparatus, utensils, reagents, and materials; dark room for photography; and rooms for offices—all in convenient association and provided with the necessary materials; and apparatus for ordinary class work and for advanced research.

Special attention has been given to parasitic fungi; and the collections of specimens and of the literature upon the subject are ample for various lines of original investigation.

Geology and Mineralogy

In this department four courses are offered in geology, two in mineralogy, and one in paleontology.

For students who wish more than a general acquaintance with these subjects, a course covering thirty-six weeks of class room and laboratory instruction has been arranged in geology, a like course in mineralogy, and one of twenty-two weeks in paleontology. A supplementary course of twenty-two to thirty-six weeks is offered those who select a geological subject for a thesis.

Engineers who wish an acquaintance with those portions only of geology which bear most directly on their future work, are offered a course of eleven weeks.

To those who desire merely an outline of the most prominent facts and theories of geology, with some idea of the methods by which the geologist arrives at his conclusions, a course of eleven weeks is offered. All these courses are fully described under "Description of Courses."

Equipment

Apparatus.—The mineralogical laboratory contains individual desks for twenty-four students, each of which is furnished with reagent bottles, Bunsen burners, and all the other apparatus now considered necessary to a complete outfit for blowpipe work in a first-class laboratory. It is also provided
with a spectroscope; a specific gravity balance; an analytical balance; a trip scale; mortars (diamond, agate, wedgwood, and iron); a chemical hood equipped with sink and a complete set of reagents and apparatus for qualitative analysis; a blast lamp and blower.

The advanced laboratory is equipped with individual desks for sixteen students, each supplied with apparatus as above; goniometers; microscopes; crystal models (550); thin sections of minerals and rocks (570); an apparatus for cutting and grinding thin sections of rocks, with a Jenney motor; a self-registering barometer; an aneroid barometer, and a telescopic hand level for topographic work.

For the recitation room there is a set of Kiepert’s physical maps; Ramsay’s orographic map of the British Isles; Haart’s Alps; Chauvauni’s Asia; geological and soil maps of Illinois; a series of geological maps of the United States representing land development during the successive periods; a set of charts illustrating orography, erosion, deposition of metals, etc.; a series of relief maps; a complete lantern outfit with microscope and solar attachment; four hundred lantern slides; an equipment for photography and the manufacture of lantern slides.

Materials.—The collection of fossils comes principally from the paleozoic, but includes a representative series from the higher groups. It contains 43,400 specimens. Six hundred and fifty of the types described in the reports of the Illinois geological survey are included, and also 200 thin sections of corals and bryozoa.

The collection of minerals contains 7,109 specimens, and that of rocks 2,912 specimens, among which is a large number of polished granites, marbles, and other ornamental building stones.

There is also a collection of Illinois soils containing 76 specimens; and a large collection of Illinois clays with their manufactured products.

Physiology

The special objects of the courses in human physiology are as follows: (1) to give to prospective students of medicine a detailed practical knowledge of the normal histological structure and vital processes of the body and a working familiarity with the instruments of precision used in the investigation of
(2) To give to students of all branches of biology a training in deducing logically necessary conclusions from data obtained by their own observations. (3) To furnish such a knowledge of physiology as will serve as a basis for future studies in hygiene.

The laboratory method of instruction is chiefly followed, supplemented, when desirable, by lectures, demonstrations, references to standard literature, and recitations. The laboratory work predominates in the major and advanced courses; the lectures, demonstrations, and recitations in the minor course. In the more advanced courses each subject is treated, so far as time will permit, as if it were an original investigation. The student is guided to the best methods to be pursued, but the results are left for him to discover: At frequent intervals the results obtained are reviewed by the instructor, and, when necessary, completed, unified, and correlated with the facts learned from previous investigation, care being taken to show the student wherein he failed to obtain a full knowledge of the subject.

EQUIPMENT

The department of physiology occupies four rooms in Natural History Hall: a general laboratory, a lecture room, and a private laboratory on the top floor, and an animal room in the basement. The general laboratory, thirty-five by fifty-six feet, is fitted at one end with desks of the most approved pattern for chemical and similar work, and at the other end with heavy tables, especially designed for use with the microscope and other apparatus requiring a stable support. The private laboratory and preparation room of the instructor is furnished with cupboards for apparatus and reagents.

The apparatus of the department may be roughly divided into three classes: That for physico-physiological work, that for chemico-physiological work, and that for the mammalian anatomy and histology necessarily taught in connection with the physiology proper. In the first class may be mentioned a Ludwig Kymograph (Zimmermann’s latest model) with automatic movement of the cylinder in the line of its axis, and an arrangement for varying the period of rotation from one revolution in two seconds to one per hour. Using the kymograph in conjunction with other apparatus, tracings are obtained showing the form and time elements of the different movements of
the body (cardiac, respiratory, muscular, etc.), and measurements are made of the rate of transmission of pulse waves, nerve currents, etc. With the assistance of a tuning fork, kept in vibration electrically, and a Deprez signal (made by Verdin), these measurements are accurate to within one-two-thousandth of a second. A moist chamber (made by the Cambridge Scientific Instrument Co.), with platinum and non-polarizable electrodes, is used in the study of the properties of muscle. Other instruments are a Fleischl spectropolarimeter, a Gower's hæmacytometer, a Gower's hæmaglobinometer, a spectroscope, and a Lautenschläger oven, with automatic temperature regulator.

The apparatus for the chemical side of the subject, although in the aggregate important and costly, is composed largely of small pieces, too numerous for individual mention. Among them may, however, be named a set of Hempel's apparatus for gas analysis, and a Knop azotometer, the last used mostly in urinary analysis.

For the measurements of mass, volume, temperature, barometric pressure, specific gravity, etc., so constantly necessary in both the physical and chemical work, the laboratory is well supplied with apparatus of the best construction, including a Sartorius balance, flasks and pipettes, thermometers, hydrometers, picnometers, etc.

For illustrative purposes in anatomy and histology the department has an Auzoux manikin, a human skeleton, a series of charts, mostly histological, about a hundred and fifty histological slides, and a number of wet preparations of lower animals. Compound and simple microscopes, microtomes, and the usual accessories for histological work are also available.

Zoölogy

Zoölogy is taught in eleven courses: Three terms of major work, variously combined to form three courses, primarily for students in the school of natural science; a term of embryology for those who have taken one of the preceding courses; five courses in entomology; a year's work in comparative anatomy, zoological œcology, or advanced zoölogy for students specializing in that subject, and a year's work in independent investigation (senior) for those who select a zoölogical subject
for the graduating thesis. Only the first term’s work is necessarily common to all students in the college who desire to make zoological study a prominent feature of their course. At the end of this term three divergent lines are open, one leading mainly towards entomology, a second towards physiology and medical study, and a third towards zoological specialties and pedagogical zoology.

In this department an additional course is given as general biology. It is an advanced course following upon zoology 10, or upon major work in zoology and botany.

EQUIPMENT

The equipment of the zoological department is contained in four students' laboratories, an instructor's laboratory, a lecture room, a private office, a store room, and a dark room for photography. It includes twenty aquaria, forty-eight compound microscopes of the best makes (Zeiss, Reicherts, Leitz, and Bausch & Lomb), Zeiss dissecting microscopes, Abbé camera — lucidas, microtomes of five patterns (Zimmerman’s Minot, Cambridge, Beck-Schanze, Bausch & Lomb, and Ryder), and the usual equipment of incubators, paraffine baths, etc. A set of Blaschka glass models of invertebrates, a set of Ziegler’s wax models of embryology, two hundred and fifty wall charts, and some hundreds of permanent preparations in alcohol, are examples of the equipment for the illustration of lectures. Advanced and graduate students have the privilege of the free use of the library and equipment of the State Laboratory of Natural History, which occupies rooms in Natural History Hall. They are also admitted to the privileges of the University Biological Station at Havana, Illinois, and will be given credit for regular work done there. They are thus afforded ample opportunity for prolonged original work in several departments of zoological science, especially in those relating to the zoology of Illinois. The Bulletin of the State Laboratory is open to graduates for the publication of their papers.

Entomological students have similar access to the collections and resources of the State Entomologist’s office, including a well equipped insectary for experimental investigation.
THE PHILOSOPHICAL GROUP

AIMS

The philosophical group includes those sciences which deal both with man as an individual, in the mental and moral spheres, especially as these are connected with his physical being, and also with man in society. The branches of knowledge included in the group occupy a place among the divisions of biological science, and it is intended to carry the spirit of biology, in the commonly accepted sense, into the investigation of these subjects. The general aim and scope of the group is the study of the character and development of the individual and of society, of the relations of man to external nature, of the influence of natural selection on social development, and, finally, of the possible effect of artificial selection on that development, through both subjective and objective influences. In the treatment of the subjects, while their literary value is not neglected, an effort is made to arouse the scientific spirit, and to keep in close touch with the other work in the college.

Under this caption the subjects of psychology, pedagogy, economics, political science, and philosophy are offered in the College of Science as electives to all chemical and natural science students, and to all students who desire to specialize in the philosophical subjects, with studies in the physical and natural sciences as a preparation for them. All the studies of this group are junior and senior subjects, open, as a rule, to those students only who have done two years of University work.

CLASSIFICATION OF SUBJECTS

PRESCRIBED

The same as in either the natural science or chemical group, pp. 89 and 103.

ELECTIVE

List A (Major Courses)

Economics 1 to 8; 2 to 11 credits.
Pedagogy 1 to 7; 4 to 9½ credits.
Philosophy 1 to 7; 1 to 6 credits.

U.—8
Political Science 1 to 9; $\frac{2}{3}$ to $9\frac{2}{3}$ credits.
Psychology 1 to 9; 1 to 9 credits.

List B (Minor Courses)

Economics 1; 2 credits.
Philosophy 1; 1 credit.
Political Science 1; 1 1/2 credits.
Psychology 1; 1 credit.

List C

The same as in the natural science group, with the omission of philosophical subjects, p. 102.

REQUIREMENTS FOR GRADUATION

In this group, as in the natural science group, a student may pursue either a specialized or a general course.*

To graduate from the College of Science in the studies of this group, in a general course, the student must either complete the subjects of the required list in the chemical group, or must carry those of the corresponding list in the natural science group, and earn six full credits additional for major natural science studies. He must further do twelve terms’ major work, or their equivalent, on subjects in the philosophical group; must take minor courses in all the philosophical subjects (except pedagogy) in which he has not completed a major course.

To graduate from this group in a specialized course the student must meet the general requirements for specialized courses, relating to thesis and amount of work required in the major subject.

Those who specialize in psychology may count all credits gained in that department, and any three earned previous to the senior year in botany 1, b, c; physiology 1, 2; philosophy 1, 8; zoölogy 3.

DESCRIPTION OF DEPARTMENTS

Economics

The instruction in this subject is based on the work of the first two years in science. The relation of the study to the
biological sciences commonly so called is emphasized and kept steadily in view. In the courses in sociology the aim is to study society as an organism, to trace its evolution from primitive forms to its present complex structure, to examine the nature of its environment and its adaptation thereto, its present normal character and operations, and the forces, subjective and objective, which are at work tending to change its structure. The courses on special topics are treated as detailed studies of special organs and functions, their character as such is described, and their relations to one another and to the whole social organism are studied.

The plan of instruction combines recitations, lectures, discussions, and reports by students on assigned topics. The advanced courses are divided into two groups and given in alternate years.

Pedagogy

For an account of the scope and methods of the department of pedagogy see Pedagogy, in the College of Literature and Arts.

Philosophy

The work in this department includes history of philosophy, metaphysics, ethics, and logic. The object of their courses is primarily threefold:

1. To meet the wants of those students who, in junior and senior years, desire to specialize more or less in this department.

2. To give those who desire a more general knowledge of these subjects, some familiarity with the sphere of philosophical speculation and with the philosophical method as applied to the principles and presuppositions of the various sciences.

3. To show the relation of philosophy to practical life and the value of these studies as means of general culture.

The subjects are taught by lectures, recitations, and the seminary method.

Political Science

See this subject in the College of Literature and Arts.

Psychology

The aim of the work in this department is to furnish the student largely by means of inductive study, a knowledge of the
laws according to which mind develops, and the influence of environment upon this development. In the various courses the laboratory method of instruction is used. By means of appropriate apparatus the sensations are studied experimentally and the conditions under which the various sensations arise are accurately determined. Apparatus is also employed to demonstrate the reciprocal relation that obtains between body and mind and to test and measure memory, attention, association, and other higher psychical forces. Throughout the courses an effort is made to put psychology upon an exact basis as a natural science.

The elementary forces of mentality as exhibited in infant life are carefully studied with a view to determine some of the components of the adult mind. A comparative study of the mental life of animals is undertaken with a view to throw some light upon the morphology of mind. The mental life of defectives and pathological states of mind are discussed in their relations to the normal type. The advanced laboratory work is of a nature to develop a spirit of independent research on the part of the student. The relation of psychology to the physical biological sciences is kept in view, so that the student may be assisted in his endeavor to bring the manifestations of mind and matter into a related whole,
COLLEGE OF AGRICULTURE

FACULTY

ANDREW S. DRAPER, LL.D., PRESIDENT.
EUGENE DAVENPORT, M. AGR., DEAN, Animal Husbandry.
THOMAS J. BURRILL, PH.D., LL.D., Botany and Horticulture.

STEPHEN A. FORBES, PH.D., Zoology.
CHARLES W. ROLFE, M.S., Geology.
DONALD McINTOSH, V.S., Veterinary Science.
ARTHUR W. PALMER, SC.D., Chemistry.
FRANK F. FREDERICK, Art and Design.
SAMUEL W. PARR, M.S., Applied Chemistry.
DAVID KINLEY, PH.D., Economics.
DANIEL H. BRUSH, Captain 17th Infantry, U. S. A., Military Science.

HENRY E. SUMMERS, B.S., Physiology.
EDGAR J. TOWNSEND, PH.M., Mathematics.
EVARTS B. GREENE, PH.D., History.
KATHERINE MERRILL, A.B., English.
WILLIAM O. KROHN, PH.D., Psychology.
WILLIAM H. VANDERVOORT, M.E., Mechanical Engineering.

HARRY S. GRINDLEY, SC.D., SECRETARY, Chemistry.
T. ARKLE CLARK, B.L., Rhetoric.
HERMAN S. PIATT, A.M., French.
ARTHUR HILL DANIELS, PH.D., Philosophy.
CHARLES W. TOOKE, A.M., Political Science.
GEORGE D. HAMMOND, A.B., History.
FRED A. SAGER, B.S., Physics.
FRANK SMITH, A.M., Zoology.
RALPH P. SMITH, PH.B., German.
HELEN E. BUTTERFIELD, M.L., Rhetoric.
ALTON C. BURNHAM, B.S., Mathematics.
GEORGE P. CLINTON, M.S., Botany.

[117]
The College of Agriculture offers a course especially strong in chemistry, botany, zoology, physiology, and bacteriology, in which both agriculture and horticulture are taught from a scientific basis, always with regard to successful practice. The aim is to discuss and to teach the principles that underlie these two great arts.

Besides affording special preparation for a technical pursuit, it is hoped that this course will commend itself to all lovers of rural life and its affairs in offering them the means of keeping pace with the increasing desire for higher learning and better equipment.

To give scope for individual preferences one full study is made elective after the freshman year. This insures the uninterrupted pursuit of the other two, and affords the opportunity to elect by courses, if desired.

METHODS OF INSTRUCTION

Instruction in the sciences is by laboratory work, supplemented by lectures, text-books, and reference readings. Laboratory methods are also regarded as peculiarly suited to the other subjects of the course and to the needs of those who pursue them. The effort throughout is to teach technical principles and practices in the light of the most profound truths known to science. The college takes a high position in regard to the standing of the subject and the needs of the students.

Reference readings are almost constantly prescribed in standard volumes and periodicals, with which the library is liberally supplied.

For purposes of illustration liberal use is made of experimental fields, live stock, buildings, and apparatus, as well as of the University grounds and cabinet collections.
The student in agriculture and horticulture receives instruction in the same classes with other students of the University, and thus enjoys all the advantages of the excellent laboratories and apparatus of the science departments.

The equipment of the agricultural department has been materially increased by recent purchases of some excellent specimens of both cattle and sheep from some of the best breeders of the United States.

A small building has been fitted to accommodate a limited number of students in certain lines of dairy instruction, notably in pasteurizing, testing, separating, creaming, churning, etc.

The Agricultural Experiment Station, with a farm of 170 acres and suitable buildings, exhibits field experiments in testing the different varieties and modes of culture of field crops, and in the comparison and treatment of soils. It carries on experiments in agriculture, horticulture, dairying, and in feeding various kinds of food to animals of different ages and development. In common with similar departments in the several agricultural colleges of the country, it attempts to make positive additions to knowledge, and to further the development of agricultural science.

The extensive fruit and forest tree plantations give abundant opportunity for studies and illustrations in many horticultural lines, and add greatly to the effectiveness of class-room work.

The ornamental grounds which surround the University buildings contain about twenty acres, and are kept in neat and attractive style. These, with their trees and flowering shrubs, lawns, beds of flowers and foliage plants, walks and drives of different construction and styles, furnish illustrations for the classes in landscape gardening. A greenhouse contains a collection of plants of great value to the classes in floriculture and landscape gardening, besides furnishing students with practice in greenhouse management.

The cabinets contain a series of colored casts of fruits, enlarged models of fruits and flowers; collections of seeds of native and exotic plants, of specimens of native and foreign woods, of beneficial and injurious insects, and of specimens showing their work; numerous dry and alcoholic
specimens and preparations; maps, charts, diagrams, drawings, etc.

The College has a supply of compound microscopes and other apparatus, and students have opportunity to learn their use and to make practical investigations with them. The herbarium is rich in specimens of useful and noxious plants, including many of the fungus parasites which cause disease to cultivated crops.

CLASSIFICATION OF SUBJECTS

PRESCRIBED

Agriculture 1, 2, 3, 4, 5, 6, 9; 4 credits.
Art and Design 1, 2, and 3 or 10; 2 credits.
Botany 1, 2; 4 credits.
Chemistry 1, 3a, 4, 5a; 4 credits.
Horticulture 1, 6; 2 credits.
Military 1, 2; 2 credits.
Physics 2; 1 credit.
Physiology 1; 2 credits.
Rhetoric 2; 2 credits.
Thesis; 2 credits.
Veterinary Science 2; 1 credit.
Zoology 3, 8; 3 credits.

ELECTIVE

Agriculture 7, 8; 2 credits.
Anthropology 1; 1 credit.
Architecture 1; 3 credits.
Astronomy 4; 1 credit.
Biology, General, 1 credit.
Botany 3, 4, 5; 6 credits.
Chemistry 5b, 5c, 13; 5 credits.
Economics 1 to 5; 2 to 5½ credits.
English 1, 2; 1½ to 3 credits.
French 5; 3 credits.
Geology 4, 1; 1 or 2 credits.
German 1 or 5, 2, 6; 3 to 6 credits.
History 1, 2, 3, 4, 7, 10 to 12; 1½ to 9 credits.
Horticulture 2, 3, 4, 5; 3 credits.
Mathematics 1, 3; 2 credits.
Mechanical Engineering 2; 1 credit.
Meteorology 1; $\frac{2}{5}$ credit.
Mineralogy 1; 1 credit.
Paleontology 1; 2 credits.
Philosophy 1, 5; 2 credits.
Physiology 2, 3; 5 credits.
Political Science 1, 2, 4 to 8; $\frac{4}{5}$ to 7$\frac{2}{5}$ credits.
Psychology 1, 3, 6; 2 credits.
Veterinary Science 1, 2, 3; 6 credits.
Zoology 4, 5; 4 credits.

 REQUIREMENTS FOR GRADUATION

For the degree of Bachelor of Science in Agriculture 40 full term-credits and an acceptable thesis, are required. Of these 29 are to be obtained by pursuing prescribed studies, and 11 are to be obtained by pursuing elective studies. Three studies are to be pursued each term, besides Military 1, 2, and Rhetoric 2, when these subjects occur.

 COURSE OF INSTRUCTION BY YEARS AND TERMS

The following scheme shows the terms of the year in which the various subjects are taught, and the order by years in which they should be pursued.

The subjects in italics are prescribed. All others are elective, but should be taken in the years and terms specified.

It will be noted that one study for each term after the freshman year is left open for the student’s election. He may therefore elect by courses and enjoy an uninterrupted pursuit of the same from term to term.

It should be further noted that at the opening of the third year an opportunity is presented for choice between specializing in horticulture or in animal husbandry. This choice, if made, should be continued.

FIRST YEAR

1. Agriculture 1, 2; Horticulture 1; Art and Design 1, 2, and 3 or 10; Chemistry 1; Military 1, 2; Rhetoric 2.
2. Agriculture 9; Art and Design 2; Chemistry 3a; Military 1, 2; Rhetoric 2.
3. Agriculture 1; Horticulture 1; Chemistry 4; Military 2; one elective; Rhetoric 2.

SECOND YEAR

1. Botany 1; Chemistry 5a; Military 2; elective.
2. Botany 1; Zoology 3; Military 2; elective.
3. Botany 1; Zoology 8; Military 2; elective.

THIRD YEAR

1. Agriculture 4; Zoology 3, or Horticulture 2; elective.
2. Physics 2; Physiology 1; Horticulture 3; elective.
3. Agriculture 6; Physiology 1; Horticulture 5; elective.

FOURTH YEAR

1. Botany 2; Agriculture 3, or Horticulture 6; elective.
2. Thesis; Veterinary Science 2; Botany 3; elective.
3. Thesis; Agriculture 5, or Botany 4; elective.

WINTER SCHOOL IN AGRICULTURE

For the winter term students are admitted without entrance examination to a special short course in which there are daily lectures and class exercises on some of the most important practical branches of agriculture, horticulture, and veterinary science. This course is designed for young men already engaged in agricultural pursuits who cannot spend a long time in college, and yet are anxious to make the most of themselves and of their vocation. Such students have access to the library and museum collections of the University, and have admission to the courses of general lectures.

The details of this course vary from year to year. A special circular, giving full information concerning it, is issued each year several weeks before the opening of the winter term.
GRADUATE SCHOOL

AIMS

It is the purpose of the graduate school to encourage advanced study and research at the University, and to promote high scholarship on the part of those who have completed an undergraduate course of instruction.

ORGANIZATION

The graduate school is in charge of the Council of Administration of the University. The Council fixes the conditions of admission, approves the courses of instruction, prescribes the character of examinations, establishes requirements for degrees, and exercises general supervision over all the affairs of the school. The dean of the general faculty is the executive officer of the school, and he should be consulted on all matters pertaining thereto.

ADMISSION AND REGISTRATION

Graduates of this University, and of other colleges and universities of approved standing, may be admitted to membership in the graduate school upon presentation of their credentials. Other persons suitably qualified may gain admission by special vote of the Council of Administration upon such conditions as may be imposed in each case. Candidates for admission register with the dean of the general faculty, at the beginning of each academic year, during the registration period preceding the commencement of instruction for the year in the University.

Non-residents may register by securing blanks, which are sent on application, and returning them properly filled out not later than the time specified. Correspondence in this case should be commenced early that no delay in registration may occur.
Registration may be accepted at other times, but the time-limit required for degrees counts from the date of registration. In all cases one registration covers an academic year or such fractional part thereof as then remains. A graduate student who desires to be absent from the University during any part of the year for which he is registered, must obtain from the dean of the general faculty a certificate of permission covering the period of absence.

Admission to the graduate school is indicated by a certificate issued to each successful candidate by the dean; this certificate must be presented to the business agent for his signature, and, if the holder is not already matriculated in the University, must be accompanied by the required fee. The certificate properly signed is to be shown to the head of each department in which instruction is sought.

With the exceptions named below, all members of the graduate school are required to be in regular attendance at the University, and to do all the work for which they are registered in the departments to which such work belongs. In case of absence on leave, or when absence is necessary to carry on investigations included in approved courses of study, the requirement of continuous residence may be modified by the Council of Administration. Graduates from baccalaureate courses of this University may register as non-resident members of the graduate school; and all members of the school who have completed the residence period required for advanced degrees may register as non-residents while completing the work required for such degrees.

STUDIES AND EXAMINATIONS

As far as can be indicated by a statement of time, full work for a graduate student consists in the use of forty-five hours a week in the lecture rooms, laboratories, etc., and in private study. Assignments of work are made upon this basis; but great variations naturally result from the subject-matter in hand, and from the abilities of individuals. Each student must select one principal line of study, called his major subject, and upon this major subject at least one-half of his work must be done; and any greater proportion of his time, up to the whole of it, may be thus devoted if proper approval is had.
When work upon the selected major subject is not arranged to require all of the student's attention, he must choose one or two minor subjects, as may be necessary to complete a full course of study. Usually, at least one minor subject should be taken. Not more than two may be taken at any one time.

The major study must be approved as graduate work for this University. The minor subjects may, under approval, be chosen from the offerings to graduates, or, except in the College of Engineering, from undergraduate courses exclusive of those usually open to freshmen. But all candidates for advanced degrees must direct their selection towards some well-defined end, determined for the most part by the character and purpose of the major study.

In architectural and engineering subjects, at least the major line of study, and not less than two-thirds of the entire work, must be taken from lists marked "primary,"* and any remaining amount to complete a full course may be taken from those designated "secondary," under the same head with the primary list.

All courses of study leading to degrees in the graduate school are subject to approval: first, by the head of the department of the University in which the major subject for each student belongs; second, by the dean of the college including such department; and third, by the dean of the general faculty. The latter officer reports to the Council of Administration for final action. The signatures of the heads of departments in which chosen minor subjects belong must also be obtained before the list reaches the dean of the general faculty. The lists of studies, as finally approved, are deposited with the registrar of the University. No changes may subsequently be made except under the same line of approvals, but extension of time may be arranged with the professors concerned and with the dean of the general faculty.

Examinations are required in all subjects, and reports upon these are made to the registrar of the University. Graduate students in undergraduate classes are examined with these classes.

The head of each department in which a student does his major work is charged with the direction and supervision of

*See the courses for graduates in architecture and engineering, in the description of courses.
such major work, and, in a general way, with the supervision of the student's entire course of study. He fixes the time and method of all examinations not otherwise provided for, sees that they are properly conducted, and reports results to the registrar. It is his duty also to keep the dean of the general faculty informed concerning all matters affecting the interests of the student, and of the school in connection therewith.

DEGREES AND FELLOWSHIPS

[See pp. 216-219.]
THE SCHOOL OF PHARMACY

The Chicago College of Pharmacy, which was formally united with the University May 1, 1896, will henceforth be conducted as the technical School of Pharmacy of the University of Illinois.

Organized in 1859 as the Chicago College of Pharmacy, this was the first institution for pharmaceutical education established west of the Alleghanies, and the third in the United States. The war caused for a time the discontinuance of instruction, and shortly after the resumption of its activities the great fire swept it out of existence, so that the present establishment dates from 1872.

Noted European savants moved with sympathy for the sufferers by the great conflagration, and actuated by interest in the cause of pharmaceutical education, presented the trustees of the institution a valuable outfit of apparatus, specimens and library, and it is from this nucleus that the school equipment has grown to its present excellent proportions.

In the diploma awarded to this school by the World’s Fair Commissioners July 14, 1893, the Library is referred to as “a collection of rare and very valuable books, printed in the 16th, 17th and 18th centuries, including the works of Galen, published in Venice in 1556, and the entire volumes of the Edinburgh Dispensatory.”

The School is situated near the business center of Chicago, at numbers 465 and 467 State Street, and occupies a building which was erected especially for its use. The lecture amphitheater, Attfield Hall, has seats for six hundred; the chemical and pharmaceutical laboratories, as also the microscopical laboratory and the dispensing laboratory, are commodious and well appointed.

The Courses of Instruction, covering two terms of twenty-five weeks each, extending from October 2, to April 23, afford opportunities for a thorough technical training, such as
is necessary for the successful practice of pharmacy. The subjects taught are Pharmacy, Chemistry, Botany, Materia Medica, Pharmacognosy, Physics.

The instruction is by lectures, illustrated by experiments, specimens, charts, etc., oral quizzes and recitations, written examinations and laboratory practice.

Admission

Any person at least 16 years of age who presents satisfactory evidence of such preliminary education as can be gained in the public Grammar School, may be admitted.

Graduation

The degree of Graduate in Pharmacy will be conferred upon such persons as are 21 years of age, have satisfactorily completed the work of two full terms and have had four years practical experience in pharmacy, including the period of attendance at the Pharmacy School.

Advanced Courses in Pharmacy and Chemistry and the involved and allied sciences are provided at the University in Urbana, and lead to graduation with the degree of Bachelor of Science in Pharmacy and Chemistry.

The requirements for admission to these advanced courses are the same as for other University courses.

For requirements for graduation, see page 93.

Persons competent to fulfil the general requirements for admission to the University may be granted credit upon the University courses for equivalent work satisfactorily completed at the School of Pharmacy.

For further information, see special announcement.
GENERAL DESCRIPTION OF COURSES

Following the description of each course of instruction will be found the necessary requirements, if any, for admission to that particular course. Careful attention must be given to these requirements and to the sequence of studies thus indicated. For instance, under Astronomy 2, for students of the College of Engineering, page 144, there are required "Mathematics 4;" "Physics 1 and 3;" "Theoretical and Applied Mechanics 1." Turning now to these subjects, it is found that Mathematics 4 is Trigonometry, Physics 1 is the major course of one year, and Theoretical and Applied Mechanics 1 is Analytical Mechanics. All these subjects must be satisfactorily passed before admission may be had to the class in astronomy.

In case a course not required for graduation is selected by less than five students, the right to withdraw the same for the term is reserved.

Graduate courses of instruction are described under the various subjects (pp. 132ff.) as an aid in the selection of studies by graduate students. They are numbered from 100 upwards. Other courses may often be arranged by the professors in charge to meet the special requirements of students. The subjects in which courses are announced for 1896-97 are as follows:

AGRICULTURE

1. Crops.—A study of crop production on fertile lands. A brief survey of the crops of the United States, followed by
a detailed study of methods employed in securing yield aside from questions of fertilizers or fertility. The selection of varieties suited to the locality and their improvement; the seed, its pedigree and vitality; the conditions of its germination, and the influence of successful or unsuccessful germination upon after-growth of the plant; the physical conditions of growth—moisture, heat, and light—and how these conditions may be influenced by cultivation, by drainage, or by irrigation. This course leads to a study of the special culture of particular crops, and of the machinery of cultivation and of harvesting, and prepares the way for the subsequent study of fertility and the more critical study of soils. *Fall and spring terms, two-fifths study.*

2. BREEDS OF STOCK.—An outline of the principal characteristics of the improved breeds, with some critical study of the animal form as an index of quality, and of the types of the more prominent breeds. Instruction is by outline lectures, reference reading, and by practice in judging at the yards. Introductory to the study of stock breeding. Practicum once a week on Saturday. *Fall term, one-fifth study.* Professor Davenport.

3. STOCK BREEDING.—Variation, its extent and importance, both in nature and under domestication. How far inherent and how far induced by environment. Acquired characters and their inheritance. Correlated variation. Selection. Survival of the fittest. Possibility of fixing favorable variations. Effects of use and disuse. Intercrossing, first as stimulating, afterwards as eliminating variations. Hybridism. Grading and its benefits. Breeding in line and inbreeding. Instinct and intelligence. The aim is to bring every known principle of reproduction to the assistance of the breeder’s art, and to study the methods of successful breeders and their results. Lectures, reference reading, and practice in comparisons of individuals, and, as far as possible, of families and herds. *Fall term, full study.* Professor Davenport.

4. FERTILITY.—Influence of fertilizers on the amount, character, and composition of crops. Effect of particular crops upon fertility and upon each other, when grown in succession or together. Nitrogen and leguminous crops. Residues, or the fate of fertilizers. The foregoing is made a basis for the study of conservation of fertility by the rotation of crops that
the residues of one crop may be saved by the next and not washed away, and is followed by a detailed study of rotations. Economic sources of the elements of fertility; fertilizers, and manures, their valuation and use under both extensive and intensive methods. \textit{Fall term, full study.}

\textbf{Required:} Botany 1; Chemistry 1, 3a, 4.

5. \textbf{Stock Feeding.}—Functional activities of the animal body and the end products of their metabolism. Foods are considered, first chemically, as affording the materials for these activities whether in construction of body tissues or of animal products, as meat, milk, etc.; second dynamically, as supplying the potential energy for these processes, and for labor, speed, etc. Preparation of foods, their palatableness and digestibility. This knowledge is used as a basis for calculating how the feeding practices of any locality may be adjusted to the consumption of the crops most successfully grown in that region, that domestic animals may become and remain, essentially, consumers of coarse crops and by-products. \textit{Spring term, full study.} Professor Davenport.

\textbf{Required:} Botany 2; Physics 2; Physiology 1; Zoology 3.

6. \textbf{Soils.}—The structure and fertility. A critical study of the processes, chemical, physical, and biological that are active within the soil, especially the physical. Drainage waters as compared with fertilizers applied, herbage produced, and rain-water fallen. Fertility and barrenness, indications, causes, and treatment. Different kinds of soil and their relations to moisture and to heat. Cumulative effect of various agricultural practices. Agency of bacteria in soil transformations and the conditions of their activities. Creation of soils and their fertility and the ultimate effect of their cultivation. \textit{Spring term, full study.}

\textbf{Required:} Botany 1; Chemistry 1, 3a, 4; Zoology 3, or Botany 2.

7. \textbf{Comparative Agriculture.}—Influence of locality, climate, soil, race, customs, laws, religion, etc., upon the agriculture of a country and incidentally upon its people. One crop only and its effect, as rice; Indian corn in American agriculture and affairs. Varying conditions under which the same
crop may be produced, as wheat. Statistical agriculture. Influence of machinery and of land titles, whether resting in the government, in landlord, or in occupant. Relation of agriculture to other industries and to the body politic. The agriculture of the world, its history and development. *Spring term, full study.* Professor Davenport.

8. *Agricultural Experimentation.*—A systematic study of the work of Experiment Stations and experimenters in this and other countries, together with a critical study of correct principles and methods of experimentation, especially designed for such students as desire to fit themselves for work in original investigation in Experiment Stations or elsewhere. *Winter term, full study.* Professor Davenport.

Required: Agriculture 4, 6.

9. *Dairying.*—Studies and practice on milk and its manipulations, including testing, separating, creaming, churning, etc., together with care of surroundings and the elements of successful manufacture of dairy products. *Winter term, full study.*

10. *Investigation and Thesis.*—There is required for graduation two terms of original investigation, the results and methods of which are to be embodied in the form of an acceptable thesis. The student may choose his subject along the line of any of the required studies of the course. The selection should be made before the opening term of the last year.

COURSES FOR GRADUATES

101. *Breeding.*—Variation and heredity, their nature and phenomena as influenced by selection, environment, and use, with special reference to improvement of domestic animals.

102. *Physiological Chemistry and the Nature of Food.*—A study of the functional activities of the animal body and the end products of their metabolism, as a basis for economical feeding.

103. *Comparative Agriculture.*—The principles and practices of agriculture as influenced by soil, climate, tradition or the political, social, or religious condition of men.
ANTHROPOLOGY

1. This course, in general anthropology, begins with a study of the physical and psychical elements of ethnography. Theories as to the origin of man are discussed, and the various races of mankind are distinguished and described. Special attention is given to the historical and comparative study of customs, ceremonies, and rights, beliefs, and folklore of primitive peoples with reference to the common characteristics and fundamental instincts of mankind and to the origin and growth of existing customs and social institutions. Lectures and prescribed reading. Winter term, full study. Assistant Professor Daniels.

Required: A major or minor course in Economics, Geology, Psychology, or Zoology.

ANTHROPOMETRY

1. This is a short course of lectures and reading under the direction of the professor of physical training. It treats of physical measurements and their application in various departments of anthropological investigation. The time at which the lectures are given is subject to arrangement between the professor and students. For students in sociology (Economics 7 or 7a), the course will be counted for \(\frac{1}{2} \) of a credit. Assistant Professor Everett.

ARCHITECTURE

1. [Replaced with Mechanical Engineering 1].

2. Wood Construction.—Formulæ and data for computing the dimensions and strengths of columns, rods, beams, girders, etc., of wood or metal are first given and then applied in the solution of numerous examples. The kinds of wood and their uses in construction and decoration, their seasoning, shrinkage, defects, and modes of protection from decay, are next studied. The construction and design of wooden floors, walls, ceilings, and roofs are then treated, and afterwards joinery, comprising doors, windows, bays, inside finish, cornices, wainscoting, etc. The construction and design of stairs of the various types terminate the work of the term. About twenty
problems are worked out on as many plates by the student. "Ricker's Wood, Stone, Brick, and Metal Construction; Jones's Logarithmic Tables." Fall term, full study. Mr. McLane.

3. Stone, Brick, and Metal Construction.—Foundations of stone, brick, concrete, and on piles, are first studied, then the materials employed in stone masonry, their uses, defects, qualities, and mode of preparation. Kinds of masonry and external finish. Tools for stone cutting and methods of using them. The preparation of working drawings is illustrated by practical applications in the study of the arch, the vault, and the dome. Brick masonry is next examined, with its materials and bonds, and several examples are drawn. The manufacture and refining of cast iron, wrought iron and steel are then studied, together with the processes of pattern making, molding, casting, refining, rolling, etc., as well as the stock or standard dimensions or sections to be obtained in the market. The special properties and value of each metal in a structure, the designing of a line of columns in a tall mercantile building, and of beams and girders, together with the study of joints and connections completes the work of the term. About twelve problems are drawn on the same number of plates. Same text-books as in fall term. Winter term, full study. Mr. McLane.

Required: General Engineering Drawing 1, 2, 3, 4.

4. Sanitary Construction.—Daily recitations or special lectures, with designs for special problems. The study of plumbing, trap ventilation, removal of wastes, construction of water closets, drains, and systems of water supply; sewage disposal. Hot water supply and fixtures in dwellings. "Gerhard's Drainage and Sewerage of Dwellings; Lectures on Sewage Disposal." Spring term, full study. Mr. McLane.

Required: Math. 4; Physics 1, 3.

5. Roofs.—This term is devoted to the elements of graphic statics, and to the applications of the science in the designing of trussed roofs. The composition and resolution of forces, equilibrium, reactions, moments, bending moments, and shears on beams, centre of gravity, and moment of inertia of any form of cross section, are first examined. The construction of wooden and of metallic roofs is next studied, then the mode of
computing permanent and temporary loads on roof trusses, of obtaining end reactions, of drawing strain diagrams, determining sectional dimensions of members, and ending with the designing of joint connections. Numerous problems are solved, five different types of trusses are usually worked out, complete designs and details being made for one of wood and another of iron or steel. *Ricker's Trussed Roofs. Ricker's Notes on Graphic Statics. Spring term, full study. Mr. McLane.*

Required: Math. 2, 4, 6; Theoretical and Applied Mechanics 1, 2, or 4, 5; Architecture 2, 3, 4 (except for students in civil and municipal engineering courses).

6. **History of Architecture.**—Two terms' work, usually divided at the beginning of the Romanesque style. Commencing with the Egyptian and ending with the modern styles, a careful study is made of each of the more important styles, successively examining the historical conditions, the local and inherited influences, the structural materials and system, the special ornaments, and the purposes and designs of the buildings, with an examination of a few of the most important typical examples of the styles. Especial attention is given to any ideas that might be useful or suggestive in American work, and to tracing the gradual evolution of architectural forms. This study, therefore, becomes a very interesting branch of the history of human civilization. Two recitations and two illustrated lectures per week. References are made to numerous works, especially to Fergusson, Lubke, Durm, Reber, Gailhhabaud, etc. *Ricker's Notes on History of Architecture. Fall and winter terms, four-fifths study. Professor Ricker.*

Required: Architecture 2, 3, 4, 8.

7. **History of Architecture (Details).**—Exercises in drawing at large scale the most important details of the Grecian, Roman, Early Christian, Byzantine, Mohammedan, Romanesque, Gothic, and Renaissance styles. Weekly illustrated lectures in addition to drawing. *Notes and Sketches. Spring term, four-fifths study. Professor Ricker and Mr. Gunn.*

Required: Architecture 2, 3, 4, 6, 8, 20.

8. **Architectural Drawing.**—The term is devoted to the Five Orders of Architecture, and to Shades, and Shades
and Shadows. A careful study of the proportions and details of the Orders is first made with recitations and blackboard sketches from memory. Applications are made in a number of studies composed from Vignola, and these are rendered in ink or wash, after the shadows cast by direct and reflected light have been found. The especial purpose of this study is to prepare students for Arch. 9. Vignola's Five Orders (complete edition with translation); Notes and References for Shades and Shadows. Spring term, full study. Mr. Gunn.

Required: Gen. Eng'g Drawing 1, 2, 4.

9. Architectural Drawing—(Monthly Problems).—An entire day in each month during the Sophomore and Junior years will be devoted to a single problem in design, usually requiring the use of the Orders. The program will be made known at the beginning of the exercise, and the sketches must be completed and rendered in shade and color during the same day. A satisfactory grade in each exercise must be attained by the student before credit is given for this study, and this will only be done after the completion of this course. Once a month, fall, winter, and spring terms, two years, 1 credit. Assistant Professor White, Mr. McLane, Mr. Gunn.

Required: General Engineering Drawing 1, 2, 3, 4; Architecture 8.

10. Architectural Drawing—(Office Work).—Instruction in this study will be given in connection with Architectural Designing (Arch. 16).

11. Architectural Seminary.—Reports and discussions of original investigations of assigned topics, especially in the History of Architecture; reviews of books, abstracts of current technical journals, and other publications. One session weekly during junior year. One-fifth study. Taken with Arch. 6 or 7. Professor Ricker.

The seminary equipment will also be used by seniors in the preparation of theses, and by graduates for advanced work.

12. Superintendence, Estimates, and Specifications. This study comprises several specialties in office work, not otherwise provided for, so far as they can be taught in a professional school. One-third the time is devoted to superin-
tendence, one-half to estimates, and the remainder to specifications, contracts, etc.

Clarke's Building Superintendence is carefully read with daily recitations. Clarke's Architect, Owner, and Builder before the Law.

In estimates the purpose of the instruction is to impart a knowledge of the usual methods of measurement of materials and work, the arrangement of computations in proper and convenient order, and an acquaintance with approximate prices of materials and labor, which vary in different localities. The methods of squaring, of cubing, of units, and of quantities, are each employed and illustrated by numerous examples.

In specifications, practice is obtained by writing out a complete set for a building.

Dietzgen's Specification Blanks are employed. The standard Contract of the American Institute of Architects is used, being first carefully studied, then filled out for the same building. Bids, certificates, and other papers are made out. Ricker's Lectures on Estimates. Vogdes' Price Book. Winter term, full study. Assistant Professor White.

Required: Architecture 2, 3, 4, 5, 6, 8, 16; Theoretical and Applied Mechanics 1, 2, or 4, 5.

13. HEATING AND VENTILATION.—A full knowledge of the scientific theory and of the practice of warming and ventilating buildings is the purpose of this study. Commencing with the fuels and the production of heat, the student passes to the flow of gases through ajutages and pipes, applying these data to the calculation of the dimensions of air ducts and chimneys. The different systems of heating by furnaces, hot water, steam, etc., are next examined, with the details of each. The sources of impurity in the air and the requirements of good ventilation are then considered, with the different methods of ventilation by aspiration, by fans, etc., ending with the study of fans of different types. Numerous problems are given. Carpenter's Heating and Ventilating Buildings. Full term, full study. Assistant Professor White.

Required: Mathematics 2, 4, 6; Architecture 2, 3, 4; Physics 1, 3; Chemistry 1; Theoretical and Applied Mechanics 1, 2, or 4, 5.

14. ARCHITECTURAL PERSPECTIVE.—The theory of perspective is taught, with all labor saving methods of abbreviating
the labor, and designing in perspective itself is made a special aim, this power being very useful to a draughtsman in preparing sketches for clients. Methods of diagonals by triangles, and by coordinates are all used. Problems in angular, parallel, vertical, and curvilinear perspective, as well as in perspective shades and shadows, are solved, requiring original work as far as possible, so as thoroughly to prepare the student for any kind of work in perspective, instead of restricting him to the study and use of a single system. Six problems are worked out on as many plates. Ware's Modern Perspective. Winter term, full study. Mr. Gunn.

Required: General Engineering Drawing 1, 2, 3, 4; Architecture 2, 3, 4, 8, 16, 20.

15. Requirements and Planning of Buildings.—The lectures will be fully illustrated by plans sketched on the blackboard, which must be embodied in students' notes. Problems in planning will be given, and these are to be worked out in rendered drawings, or as otherwise directed. References will frequently be made to the University library and the architectural cabinet. Winter term, full study. Assistant Professor White.

Required: Architecture 2, 3, 4, 8, 16.

16. Architectural Designing—(Residences).—Practice in office methods of preparing drawings and in the design and the study of the requirements for dwellings are the object of this study. The work is limited to residences, since this class of buildings is likely to afford the graduate his first opportunity for independent original work. The designing of a convenient, attractive dwelling, to cost a limited amount, is really a very difficult problem, requiring more time and thought than any other building of equal cost. Lectures with blackboard sketches to be copied in students' notes. Problems in design worked out in rendered drawings. Gibson's Convenient Homes. Fall term, full study. Assistant Professor White.

Required: Architecture 2, 3, 4, 8, 20.

17. Architectural Designing—(Problems).—Each student makes sketches at small scale for assigned problems, which are criticised and modified until approved, then worked out in plans, elevations, and details, these drawings being
rendered in shade or color as required. The object is to obtain as much practice in original design as possible; and in the making of rapid and effective sketches, suitable for submission to a client or employer. Fall term, full study. Assistant Professor White.

Required: Architecture 2, 3, 4, 6, 7, 8, 9, 11, 15, 16, 18, 20.

18. Esthetics of Architecture.—The laws of correct design, so far as these may be formulated in words, are illustrated by the study of numerous examples. Commences with the study of the nature and mode of working the different materials used for structural and ornamental purposes, deducing the proper ornamental treatment for each, then taking up the proper decoration of walls, ceilings, and roofs. The general principles of ornamentation are next applied to flat surfaces and to solids of various shapes. A full study of the various materials used in furniture, art works, etc., is then made, with suggestions for their proper use in the art industries. About twenty problems in original design are rendered on as many plates. Ricker's (abridged) Translation of Redtenbacher's Architektonik; Meyer's Handbook of Ornament. Spring term, full study. Professor Ricker.

Required: Architecture 2, 3, 4, 6, 8, 14, 16, 20.

19. Architectural Engineering.—This continues the study of graphic statics, commenced in Roofs, with applications to metallic roofs of wide span, roof trusses of curved or unusual form, and those supported by abutments and jointed. Spherical and conical trussed domes. Effect of moving loads on girders, the graphical analysis of the arch, vault, and dome, and of the Gothic system of vault and buttress. Construction and details of steel skeleton buildings. Practical applications are made to a series of problems in design for specified cases. Ricker's Notes on Advanced Graphics; Freitag's Architectural Engineering; Ricker's Translation of Wittman's Arch and Vault. References to the works of Planat, Landsberg, DuBois, Clarke, Ott, Levy, Muller-Breslau, etc.; on Graphic Statics. Spring term, full study. Assistant Professor White.

Required: Math. 2, 4, 6; Theoretical and Applied Mechanics 1 and 2, or 4 and 5; Architecture 2, 3, 4, 5.

20. Architects' Art Course 1, Prescribed.
Any three of Art and Design 1, 2, 3, 5, 6, 13. *Fall, winter, and spring terms.* Professor Frederick.

Any three of Art and Design 5, 6, 7, 8, 10, 11, 13. *Fall, winter, and spring terms.* Professor Frederick.

Required: Architecture 20.

The Art and Design courses offered as Architecture 20 and 21 are varied to meet the special needs of students of architecture.

22. Renaissance Design.—*Fall term, full study.*

23. Gothic Design.—*Winter term, full study.*

24. Romanesque Design.—*Winter term, full study.*

In each of these three courses a prescribed series of tracings of important details are to be made, and a single problem in design will be worked out as fully as time will permit. To acquaint the student with the methods of construction and motives in design peculiar to the style, a course of lectures will be given during each term. These will be fully illustrated by stereopticon views and blackboard drawings. A second term of work in Architecture 23 will be accepted in lieu of Architecture 24 or 25. Professor Ricker and Assistant Professor White.

Required: Architecture 2, 3, 4, 6, 8, 9, 11, 14, 15, 16, 18, 20.

These three courses, 23 to 25 inclusive, are not regularly offered and will be taught during the year 1896–97 by special arrangement only.

25. Composition of Ornament.—This term is devoted to daily exercises in the designing of architectural ornament to decorate the structural forms usually found in architectural practice. These designs will be charcoal or crayon sketches, drawings rendered in shade or color, or finished drawings. They will be made on as large a scale as possible, usually full size. *Spring term, full study.* Professor Ricker and Assistant Professor White.

Required: Architecture 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 18, 20, 21, 22, 23, 24.

This study is not regularly offered and will be taught during the year 1896–97 by special arrangement only.
COURSES FOR GRADUATES

PRIMARY

101. Construction of Extensive Wooden Buildings, 1, 2, or 3 credits.
102. Recent Uses of Stone, Brick, and Terra Cotta in Architecture, 1, 2, or 3 credits.
103. Metallic Skeleton Buildings, 1, 2, or 3 credits.
104. Fire-resisting and Fire-proof Buildings, 1, 2, or 3 credits.
105. Sanitation of Public and Semi-public Buildings, 1, 2, or 3 credits.
106. Researches on the Evolution of Architectural Styles, 1, 2, or 3 credits.
107. Higher Application of Graphic Statics, 1, 2, or 3 credits.
108. Heating and Ventilation of Large Buildings, 1, 2, or 3 credits.
109. Higher Studies in Architectural Design, 1, 2, or 3 credits.
110. Researches and Experiments in Applied Esthetics, 1, 2, or 3 credits.
111. Translation of an Approved Technical Architectural Work from the French or German, 1, 2, or 3 credits.

SECONDARY

112. Stereotomy Applied to American Problems, 1 credit.
113. Examinations of Heating and Ventilation of Buildings, 1, 2, or 3 credits.
114. Higher Workshop Practice, 1 credit.
115. Photography for Architects, 1 credit.
116. Methods of Reproducing Drawings, Specifications, etc., for Architects, 1 credit.
117. Higher Problems and Methods in Perspective, 1 or 2 credits.
118. Practice in Estimates, Specifications, etc., for Large Buildings, 1, 2, or 3 credits.
119. Higher Industrial design, 1 or 2 credits.
120. Advanced Water-color Painting, 1 credit.
121. Study of Office Methods and Arrangements, 1 credit.
122. Any primary offered in the College of Engineering, 1 credit.
ART AND DESIGN

1. **FREE-HAND DRAWING.**—Lectures on free-hand perspective and practice in drawing geometric solids. Principles applied by drawing groups of common objects, as books, vases, chairs, tables, etc., casts of ornament; interiors, as the corner of the room; plants and flowers from nature. *Frederick's Notes on Free-Hand Drawing. Fall, winter and spring terms, full study.* Mr. Lake.

2. **CHIAROSCURO.**—Study of chiaroscuro in charcoal, crayon, ink, pencil, and water color (monochrome) of geometric solids, still-life, casts of ornament, details of the human face and animal forms. *Working Drawings of Ornament. Winter and spring terms, full study.* Professor Frederick and Mr. Lake.

Required: Art and Design 1.

3. **ARTISTIC ANATOMY.**—Artistic anatomy of the human figure. Drawing from Rimmer's *Art Anatomy* and Julien's *Études d'Après l'Antique.* Outline drawing from the antique figure. *Duval's Artistic Anatomy. Spring term, full study.* Professor Frederick.

Required: Art and Design 1, 2.

4. **THE ANTIQUE.**—Shaded drawings in charcoal or oil from the antique figure. Sketching from costumed model. *Spring term, full study.* Professor Frederick.

Required: Art and Design 1, 2, 3.

5. **PEN DRAWING.**—Work with pen and ink arranged to suit the needs of students from all departments. *Fall term, full study.* Professor Frederick and Mr. Lake.

Required: Art and Design 1.

6. **MODELING.**—Modeling in clay (a) details of human face, (b) copy of cast of ornament, (c) ornament from photograph. Casts are made of (a) at least one modeled piece, (b) arm, hand, or foot from nature, (c) foliage, fruit, or vegetable from nature. *Fall term, full study.* Professor Frederick.

Required: Art and Design 1, 2.

7. **ADVANCED MODELING.**—Modeling: (a) bas relief from antique figure, (b) anatomical rendering of an antique figure, (c) bust from the antique, (d) portrait head from nature in the
round or relief. Casting: (a) piece mould, (b) sulphur mould, (c) gelatine mould. Full term, full study. Professor Frederick.

Required: Art and design 1, 2, 6.

8. Oil Painting.—This course of painting in oil color is designed for beginners, and consists of two parts: (a) study in monochrome from still-life; (b) group, as a study for composition and color. Winter term, full study. Professor Frederick.

Required: Art and Design 1, 2, 3.

9. Advanced Oil Painting.—This is a continuation of course 8. It comprises a careful study of the methods followed in landscape painting. A number of time sketches of still-life are required. Winter term, full study. Professor Frederick.

Required: Art and Design 1, 2, 3, 8.

10. Water-Color Painting.—Painting in water-color: (a) group, as a study for composition and color; (b) sketching from nature. Spring term, full study. Professor Frederick.

Required: Art and Design, 1, 2.

11. Theory of Color.—In this course the student takes up the study of color as a means of interior and exterior decoration. Several original problems are required. Winter term, full study. Professor Frederick.

Required: Art and Design 1, 2.

12. Relation of Design to Manufacture.—This is primarily a course in industrial design arranged for special students of that subject. Spring term, full study. Professor Frederick.

Required: Art and Design 1, 2, 3, 10, 11.

13. Architectural Rendering.—This course is intended primarily for students of architecture. Perspectives are rendered in water-colors, and buildings sketched from nature. Frederick's Architectural Rendering in Sepia. Spring term, full study. Professor Frederick.

Required: Art and Design, 1, 2.

ASTRONOMY

1. Celestial Mechanics.—This course will include a study in detail of some of the principles and laws of analytical
mechanics as applied to the solution of astronomical problems. More specifically, it will consider the following and other similar subjects: motion of a particle in space under the action of central forces; determination of paths when the laws of force are given; determination of orbits, masses, etc., of the heavenly bodies. So far as is possible all computations are based upon data taken by the student. Watson’s Theoretical Astronomy. Winter term, full study. Associate Professor Myers.

Required: Theoretical and Applied Mechanics 1.

2. Descriptive Astronomy.—For students of the College of Engineering. This course comprises the subject matter of course 1, and, in addition, some of the fundamental principles of celestial mechanics. Astronomy is here taught with a view to its utility rather than as a matter of general information. Students are required to work out problems in latitude and longitude, to deduce from the principles of mechanics formulae for weighing the masses of the heavenly bodies against one another, to solve problems involving corrections for parallax, refraction, dip of the horizon, and to determine mathematically the distances, dimensions, and orbits of the bodies of the solar system. When weather permits, the equatorial telescope is in use by students, and time is spent in the location and study of the constellations. Frequent readings are assigned on astronomical subjects of value to be found in astronomical publications in the library. Though no attempt is made to teach practical astronomy, which is taught as a specialty in civil engineering, the practical features of descriptive astronomy are kept uppermost in this course. Young’s General Astronomy. Spring term, full study. Associate Professor Myers.

Required: Math. 4; Physics 1, 3; Theoretical and Applied Mechanics 1.

3. Mathematical Astronomy.—This course will be a continuation of the work begun in Celestial Mechanics. Considerable time must be spent in the work of the observatory. Fuller consideration will be given to these topics: the doctrine of the sphere; motions of the heavenly bodies; instrumental adjustments and methods; and various other mathematical practical features of the subject. The aim will be to
familiarize the student with the practice and the problems of the working observatory. *Watson's Theoretical Astronomy; Chauvenet's Practical Astronomy; Price's Analytical Mechanics.* Fall term, 2 hours per week; winter and spring terms, 3 hours per week. This, with Mathematics 16 and 17, constitutes a full study for each term. Associate Professor Myers.

Required: Astronomy 1.

4. **Descriptive Astronomy.**—For students in Colleges of Agriculture, Science, and Literature and Arts. The aim of this course is to supply (1) a general knowledge of the facts of astronomy, (2) a clear conception of the principles underlying them, and (3) an understanding of the methods of arriving at these facts. The subjects considered are the doctrine of the sphere, the heavenly bodies, their nature, dimensions, characteristics, and the influence they exert upon one another by their attractions, radiation, or any other ascertainable cause. The most important instruments of astronomical research are explained, and during favorable weather, the sun, moon, and planets will be studied with the equatorial telescope. Methods of spectroscopic research are discussed, and, as far as possible, illustrated. Illustrative charts and lectures are also occasionally resorted to. *Newcomb and Holden's Astronomy, Advanced Course.* Spring term, full study. Associate Professor Myers.

Required: Math. 3.

Bacteriology

[See Botany 2, p 147.]

Bibliography and Library Economy

A short course of lectures on this subject will be given by the librarian to such students as elect it. Assistants in the library will usually be chosen from those who take these lectures. The time is at the convenience of instructor and students.

Biology — General

General Biology.—For those who have taken Zoölogy 10 (minor course) or a major course in either botany or zoölogy a single term of advanced general biology is arranged and
especially commended. It is intended to review, extend, systematize, and unify the student's knowledge of the phenomena, the history, and the laws of life, and of the relations of plant and animal, of living and not living matter, and of biology to the other sciences. It will be taught chiefly as a seminary subject, with occasional lectures and some study of text. It is primarily a junior or senior study. Spring term, full study. Professor Forbes.

Required: Zoology 10, or a major course in Botany or Zoology.

BOTANY

1. Morphology, Histology, and Physiology.—This course extends throughout the year, beginning in the fall, but the first term's work will be accepted as a minor course for those not making botany a specialty. The second and third terms can not be credited separately. The full course is offered as an introduction to the methods and facts of botanical science, and, though complete in itself, is intended to serve as a foundation for further studies of plants and their affinities among themselves and their relations in nature. Laboratory and field work is supplemented and extended by lectures, the study of text, and by reference reading.

The morphology and classification of illustrative groups of plants, beginning with the lowest orders, constitute the work of the first term. Special attention is given to fresh water algae and to fungi, but mosses, ferns, and flowering plants are included.

During the second and third terms the general histology of plants is studied alternately with experiments in vegetable physiology. The inter-relations of structure and function of organs are thus made as serviceable as possible in gaining information and in connecting cause and effect. Students examine microscopical sections, make micro-chemical tests, draw figures, and write descriptive notes. In the physiological laboratory the studies include: the extent and causes of movements of fluids in the tissues; the absorption of nutrient materials; respiration; photosynthesis; growth; sensitiveness; variation and heredity, etc. Fall, winter, and spring terms, full study. Professor Burrill and Mr. Hottes.

Required: Chemistry 1; Art and Design 1, 2.
2. Bacteriology.—Bacteria and allied organisms are now known to play exceedingly important roles in nature, and in the daily life and well-being of man. This course is an introduction to existing knowledge upon the subject, and offers instruction in the modern methods of experimentation and research. The laboratory is well equipped for a limited number of students. Only those who can give extra time, when occasion demands, should undertake the work. Lectures and assigned reading accompany the laboratory work. Fall term, full study. Professor Burrill and Mr. Hottes.

Required: Botany 1 or 6; Chemistry 1.

3. Systematic Botany.—There is offered in this course an opportunity for advanced work upon selected groups of plants, including the collection and preservation of specimens, the identification and description of species, and studies upon systematic affinities. The course extends through two terms, and should be taken as laid down, though there is little essential relation of sequence between the work of the two terms.

The morphology and affinities of selected orders of flowering plants, herbaria and herbarium methods, studies upon the evolution of the vegetable world, are included in the work of the first term. The second term is devoted to cryptogamic plants, and the time is largely occupied in the determination and classification of species, together with studies upon life histories. Students who propose to take this term’s work should arrange with the instructor at the beginning of the year or earlier, and should make collections for themselves. Mostly laboratory work. Fall and winter terms, full study. Professor Burrill and Mr. Clinton.

Required: Botany 1.

4. Reproduction and Development.—Special experimental and research work in vegetable physiology, embryology, and life histories. Mostly laboratory work. Spring term, full study. Professor Burrill and Mr. Hottes.

Required: Botany 1.

5. Investigation and Thesis.—Facilities are offered for original investigations upon selected subjects upon which may be based a thesis required for a degree. Special arrangements should be made with the instructor during the preceding
year, or at least not later than the beginning of the year in which the work is to be taken. *Fall, winter, and spring terms, full study.* Professor Burrill.

Required: Botany 1, 3, and 4, or an equivalent.

6. **General Botany.**—This minor course is offered to students who have but a single term to devote to botanical study. An endeavor is made to present a general view of the science and to provide an introduction to modern methods of work. Lectures or recitations, but mostly laboratory and field work. *Spring term, full study.* Mr. Clinton.

7. **Pharmaceutical Botany.**—The microscopical examination of vegetable drugs and their adulterations. Microscopy, including the structure and use of the compound microscope and the preparation of objects. Use of drawing and photographic apparatus. *Winter term, two-fifths study; spring term, three-fifths study.* Professor Burrill and Mr. Hottes.

COURSES FOR GRADUATES

101. **Biological Botany.**—The preparation and study of material by histological methods; and experiment work with living vegetation in the laboratory and field in working out special problems in the development, physiology, and pathology of plants.

102. **Systematic Botany.**—Critical and comparative studies of species included in chosen groups of spermaphytes or sporophytes, or from selected geographic areas, in connection with considerations of genealogic development, geographic distribution, and inter-related association.

103. **Bacteriology.**—Investigations upon morphologic and physiologic variation due to treatment; systematic studies upon the number, validity, and relationship of species; researches upon special saprophytic or parasitic kinds of bacteria and upon methods of favoring or combating their activities.

104. **Evolution of Plants.**—Observations and Experiments upon plants and studies in related literature, in gaining information upon such topics as the following: The influence of environment, effects of self and cross fertilization, tendencies of variation, philosophy of selection, nature and laws of heredity.
1. **Elementary and Experimental Chemistry.**—This course, which is designed for those who desire an elementary knowledge of chemistry, deals only with the fundamental, general principles of the science, the few typical elements and compounds which are studied being considered largely for the purpose of illustration.

The instruction includes lecture-demonstrations, recitations, and laboratory exercises. The laboratory work comprises a series of such experiments as serve best to illustrate the relations between the observed facts and the general principles, and to familiarize the student with the methods of chemistry. *Remsen's Introduction to Chemistry.* Fall term, full study. Professor Palmer and Assistant Professor Grindley.

2. **Descriptive Inorganic Chemistry.**—This course is required of all chemical students. It is mainly devoted to a study of the metallic elements, their classification, compounds, and chemical properties. The work is from lectures and assigned text (no laboratory work). *Remsen's Advanced Course.* Winter and spring terms, three-fifths study. Assistant Professor Grindley.

 Required: Chemistry 1.

3a. **Qualitative Analysis.**—This course includes a study of salts, their formation, solubilities, chemical reactions, etc. The periodic classification of the elements is made the basis for developing the principles of analysis. The work in the laboratory, after illustrating those principles, is occupied with the determination of base and acid constituents of a given number of unknown substances. *Winter term, laboratory work 2 hours daily, and lectures 3 hours per week, full study.* Professor Parr.

 Required: Chemistry 1.

3b. **Qualitative Analysis, continued with more complex Substances.**—A comparative study of methods, difficult separations, problems in synthesis, etc. *Spring term, laboratory work 3 hours daily, full study.* Professor Parr.

 Required: Chemistry 1, 2.

4. **Elements of Organic Chemistry.**—A course in organic chemistry, provided more especially for students who are not
making a specialty of chemistry. The instruction is directed mainly to the consideration of the general characteristics and the mutual relations of some of the most important classes of carbon compounds, and the course constitutes a general introduction to the principles and the methods of organic chemistry. In the laboratory a few typical substances are prepared. Remsen's Organic Chemistry. Spring term, full study. Professor Palmer.

Required: Chemistry 3a.

5a. Quantitative Analysis.—General principles and practices of gravimetric quantitative analysis, beginning with salts of definite composition. The purpose here is to gain facility and accuracy of manipulation, together with a knowledge of the principles involved in the best practice. Lectures and assigned text from Fresenius's Quantitative Analysis accompanying the laboratory work. Fall term, full study. Professor Parr.

Required: Chemistry 3b.

5b. Quantitative Analysis, continued.—This course includes volumetric analysis and the analysis of silicates; as, feldspars, clays, etc. Winter term, full study, laboratory work three hours daily. Professor Palmer and Mr. White.

Required: Chemistry 5a.

5c. Examination and Analysis of Foodstuffs, Milk, Butter, etc. Sanitary Examination of Air, or Analysis of Agricultural Products, Materials, Fertilizers, etc.—Spring term, full study. Laboratory work is required three hours daily. Professor Palmer and Assistant Professor Grindley.

Required: Chemistry 5b.

6. Technological Chemistry.—This is lecture-room work only, and comprises a study of technological chemistry as illustrated in those industries having a chemical basis for their principal operations and processes. Much use is made of the journals. Winter and spring terms, half study. Wagner's Chemical Technology. Professor Parr.

Required: Chemistry 2, 3b.

7. Advanced General Chemistry.—A course in physical chemistry, including thermo-chemistry, consisting mainly
of laboratory work. It comprises determinations of vapor density, specific heat, depression of freezing point, elevation of boiling point, and calculation of molecular and atomic weights from the data thus obtained, followed by use of calorimeter, polariscope, and other instruments, in determining such constants as serve in characterization or for quantitative estimation of chemical substances, or which serve as the basis of theoretical generalizations. Occasional lectures and the reading of assigned subjects accompany the laboratory work. *Fall, winter, or spring terms, full study.* Professor Palmer.

Required: Chemistry 2, 5b; Physics 1, 3.

8. **Iron and Steel Analysis.**—Methods for determination of all the constituents are studied, including both rapid and standard methods, especial attention being given to technical methods for determination of phosphorus and sulphur. *Spring term, full study.* Professor Parr and Mr. White.

Required: Chemistry 5b.

9. **Organic Chemistry.**—The work of this course consists in the detailed discussion of the characteristics of several of the more typical and simple organic compounds, followed by the briefer consideration of most of the important classes of the derivatives of carbon. The instruction comprises lectures, recitations upon assigned subjects, and laboratory work. Bernthsen's *Organic Chemistry* is used as reference and textbook. The laboratory work includes the preparation of organic compounds in accordance with the directions given in the manuals of Cohen, Fischer, and Levy, and the ultimate analysis of several of the finished products. *Winter and spring terms, full study.* Professor Palmer and Assistant Professor Grindley.

Required: Chemistry 2, 5a.

10. **Sanitary Analysis.**—One whole term is devoted to the chemical examination of potable and mineral waters. Detection and estimation of some of the most important poisons, organic and inorganic. *Fall term, full study.* Professor Palmer.

Required: Chemistry 5a.

11. **Investigations and Thesis.**—Candidates for graduation from the chemical courses are required to devote at least
three hours per day for two terms to the investigation of some
selected chemical subject, the results of which are to be
embodied in a thesis. The choice of subject should be made
early in the year. It must be determined upon by consulta-
tion with the professors of chemistry before the first Monday
in November. Between that time and the beginning of the
winter term an index to the bibliography of the subject must
be prepared and presented to the professor who is in charge
of the investigation. In the research work the student is
required to make full use of the various sets of journals, not
only for the purpose of preparing himself for the experimental
portion of the work and arranging a proper introduction to
the thesis, but also as an essential means of extending his
acquaintance with chemical literature and drill in consultation
of works of reference. Winter and spring terms, full study.
(A) General, Professor Palmer; (B) Technological, Professor
Parr.

Required: Chemistry, 13 credits.

12. THEORETICAL CHEMISTRY.—A course of instruction
which includes discussions of the principles and theories of
general chemistry. Ostwald's Outlines of General Chem-
istry. Winter and spring terms, two-fifths study. Professor
Palmer.

Required: Chemistry 4 and 5a.

13. AGRICULTURAL CHEMISTRY.—A course of lectures upon
the chemical principles and processes involved in agriculture,
taken conjointly with laboratory practice in analysis of agri-
cultural products and materials. Winter and spring terms,
full study. Assistant Professor Grindley.

Required: Chemistry 5a.

14. METALLURGY.—Especial attention is given to the effect
of impurities in ores upon metallurgical processes and finished
products. Fuels, refractory materials, and fluxes are described
and their value and application explained. A series of models
of furnaces and specimens of furnace material and products
are used in illustration. Much use is made of publications
and of methods setting forth the present practice of actual
plants in operation. Fall term, full study. Professor
Parr.

Required: Chemistry 8.
15. **Metallurgical Chemistry and Assaying.**—This course includes: (a) the analysis of finished metallurgical products; as, commercial lead, spelter, aluminum, copper, etc.; and (b) the fire assay of lead, gold, and silver ores. Fluxes, reagents, and charges are studied in connection with various typical ores and practice given in the use of the crucible and muffle furnaces and in the manipulations connected with fire assaying. *Fall term, full study, or either division alone, half study.* Professor Parr and Mr. White.

Required: Chemistry 5b.

16. **Chemistry for Engineers.**—This course is arranged particularly for mechanical engineers. It involves the proximate analysis of coals, determination of calorific power, technical analysis of furnace gases, examination of boiler waters, etc. *Winter term, full study.* Professor Parr and Mr. White.

Required: Chemistry 1.

17. **Industrial Chemistry.**—A laboratory course in the preparation of chemical products from raw materials. The manufacture and proving of pure chemicals, fractionation, and other processes of the manufacturing chemist. *Winter term, full study.* Professor Parr.

Required: Chemistry 5b.

18. **Special Advanced Courses.**—Special laboratory courses as indicated below may be arranged for those competent to pursue them. From one-fifth to three credits will be allowed in the undergraduate courses for such work.

(a) Technical Gas Analysis, ⅛ credit.
(b) Urinalysis, ⅝ credit.
(c) Toxicology, ⅔ credit to 2 credits.
(d) Metallurgical Chemistry, 1 to 3 credits. Professors Palmer and Parr.

19. **Seminary.**—Reports and discussions upon assigned topics from current chemical literature. One session each fortnight during the junior and senior years. *Two credits.* Professors Palmer and Parr.

20. **Quantitative Analysis.**—An elementary course intended especially for such students of other departments as desire some training in the processes of quantitative analysis, but have not the time or the opportunity to enter the regular
course in this subject (Chem. 5). The work may vary in character, to some extent, according to the need of the individual student. *Spring term, full study.* Professor Palmer and Mr. White.

Required: Chemistry 3a.

COURSES FOR GRADUATES

101. Research work in organic chemistry.
102. Research work in general inorganic chemistry.
103. Research work in agricultural chemistry.
104. Investigations of heating power of fuels.
105. Research in metallurgical chemistry.

(a) Action of solvents in extraction of gold and silver from their ores.

(b) Methods of analysis of ores and products.

CIVIL ENGINEERING

1. **LAND SURVEYING.**—Areas and distances by chain, compass, and plane table; U. S. public land surveys, including legal points involved in the reestablishment of boundaries; magnetic variation and determination of true meridian. The students solve numerous problems in the field with instruments. To facilitate practice in surveying, an area has been specially prepared in which the difficulties of plane surveying are presented to the beginner as he is able to meet them, and where he is taught practical methods of overcoming them. All possible distances, directions, areas, and elevations are accurately known; and hence the instructor knows before-hand the precise result which the student should obtain. This is an incentive to the student and enables the teacher to show him the degree of accuracy attained, and also to point out errors. *Bellows and Hodgman's Surveyor's Manual.* Fall term, full study. Assistant Professor Pence.

Required: General Engineering Drawing 1, 2, 3, 4; Math. 4.

2. **TOPOGRAPHICAL DRAWING AND SURVEYING.**—Topographical drawing is given during the bad weather of the
winter term. The student spends about half a term making the standard topographical symbols. During the spring term topographical surveying is taught, in which students solve problems with the plane table and the stadia, and make a topographical survey and plot the notes. This and course 3 must be taken together. **Winter and spring terms, half study.** Assistant Professor Pence.

Required: Math 4; General Engineering Drawing 1, 2, 3, 4; Civil Engineering 1.

3. **Transit Surveying and Leveling.**—Construction, adjustment and use of the transit and level; angles, inaccessible distances, and areas with the transit; profiles and contours with the level. Two weeks’ time is given to practice in running railroad curves. The department is provided with the instruments necessary for the different branches of engineering field practice, including chains, tapes, compasses, plane tables, stadias, transits, levels, barometers, sextants, and solar transits. These instruments are in constant use by the students whenever the weather will permit. This and course 2 must be taken together. *Baker’s Engineers’ Surveying Instruments. Winter and spring term, full study.* Assistant Professor Pence.

Required: Math 4; General Engineering Drawing 1, 2, 3, 4; Civil Engineering 1.

4. **Railroad Engineering.**—In the field practice the class makes preliminary and location surveys of a line of railroad of sufficient length to secure familiarity with the methods of actual practice. Each student makes a complete set of notes, maps, profiles, calculations, and estimates. In addition to the mathematical theory of curves, turnouts, crossings, and the calculations of earth work, instruction is given by means of text-books, assigned reading, and lectures on the principles of economic location, particularly the effect of distance, grade, and curve upon operation and maintenance, and of methods of construction, equipment, and maintenance of way. *Godwin’s Railroad Engineer’s Field-Book. Fall term, full study; winter term, half study.* Assistant Professor Pence.

Required: Math 4; General Engineering Drawing 1, 2, 3, 4; Civil Engineering 1, 2, 3.
5. Masonry Construction.—Requirements and methods of testing stone, brick, cement, and lime; composition, preparation, and strength of mortar and concrete; classification, construction, strength, cost of stone and brick masonry; foundations under water; theory of stability, cost, etc., of dams, retaining walls, bridge piers, bridge abutments, culverts, and arches. The students have experiments in the masonry laboratory, in testing cement, mortar, stone, and brick. *Baker’s Masonry Construction. Fall term, full study. Professor Baker.*

Required: Math. 2, 4, 6, 7, 8, 9; Theoretical and Applied Mechanics 1, 2; General Engineering Drawing 1, 2, 3, 4.

6. Geodesy.—Geodesy is taught by lectures and assigned reading. Studies are made of the instruments and methods employed in spirit, barometrical, and trigonometrical leveling; the apparatus and methods used in measuring base lines; the location and construction of stations; the method of measuring the angles and reducing the triangulation; the principles of projecting maps; the methods employed in running parallels and meridians. The apparatus consists of a twelve-inch altazimuth instrument reading to single seconds, a precise level, aneroid and mercurial barometers, three wooden base rods, a comparator, a steel tape with level, thermometer, and spring balance. Problems are solved in barometrical, trigonometrical, and precise leveling, and in reading horizontal angles. *Fall term, half study.* Professor Baker.

Required: Math. 4; General Engineering Drawing 1, 2, 3, 4; Civil Engineering 1, 3; Descriptive Astronomy 2.

7. Practical Astronomy.—Lectures, recitations, and practice. The object is to familiarize the students with those principles of practical astronomy employed in extended surveying operations, and also to train the student in methods of exact observations. The apparatus consists of an observatory with five isolated stone piers; a 12-inch altazimuth instrument reading by micrometers to single seconds, both of altitude and azimuth; an astronomical transit; three chronometers; two sextants; two solar transits; and a set of meteorological instruments. The problems include the adjustments of all the instruments and the determination of time, latitude, and
azimuth by the several methods. *Loomis's Practical Astronomy.* Fall term, half study. Professor Baker.

Required: Math. 4, General Engineering Drawing 1, 2, 3, 4; Civil Engineering 1, 3; Astronomy 2.

8. **Bridges.**—The instruction in bridges occupies two terms. (1) The first—bridge analysis—is devoted to the calculations of the strains in the various forms of bridge trusses, by algebraic and graphical methods, consideration being given to weights of bridge and train, and force of wind. (2) The second—bridge design—is devoted to designing bridges, proportioning sections, and working out details. Each student designs and makes a full set of drawings of a bridge. The apparatus consists of a series of full-sized joints and connections of a modern iron railroad bridge, numerous models of bridges, a large collection of drawings, photographs, and lithographs of bridges. *Johnson's Modern Framed Structures.* Winter and spring terms. Professor Baker.

Required: Math. 2, 4, 6, 7, 8, 9; General Engineering Drawing 1, 2, 3, 4; Theoretical and Applied Mechanics 1, 2; Architecture 6.

9. **Tunneling.**—This course, treating of methods of tunneling and mine attack, is given to students of civil engineering. The lectures treat first of the nature and use of explosives, compressed air, and power drills. The methods of tunneling are then explained and discussed, with their accompanying methods of timbering and walling. Attention is given to the sinking of shafts for the working of tunnels, or for the purpose of driving. The details of the duties of a tunnel engineer are made as clear and concise as possible. Students are required to make written reports upon the methods employed in particular tunnels. Some time is given in the earlier part of the course to the practice in boring wells, dredging, quarrying, and subaqueous blasting. *Spring term, full study.* Professor Baker.

Required: Math. 2, 4, 6; General Engineering Drawing 1, 2, 3, 4; Mechanical Engineering 1, 4; Chemistry, 1; Physics 1.

10. **Surveying.**—For students in the courses of architecture, architectural engineering, and mechanical engineering. Areas with chain and compass, U. S. public land surveys, and
principles of reestablishing corners; use of transit in finding distances, areas, and in laying out buildings; use of the level in finding profiles and contours. *Baker's Engineers' Surveying Instruments.* Spring term, full study. Assistant Professor Pence.

Required: Math. 4; General Engineering Drawing 1, 3, 4; Physics 1.

11. **Structural Details.**—A study is made of joints and connections in wood and iron. Special attention is given to faulty methods of construction and to impress upon the student the importance of correctly proportioning the smallest details. Each student makes, preferably during the summer vacation preceding his senior year, a full detailed measurement of a pin-connected railway or highway bridge. In the classroom he makes a drawing of the structure, computes the stresses, and reports upon the efficiency of each detail. *Lectures, reference books, and drawings.* Winter term, full study. Professor Baker.

Required: Math. 2, 4, 6, 7, 8, 9; General Engineering Drawing 1, 2, 3, 4; Theoretical and Applied Mechanics 1, 2; Architecture 6; and free-hand sketches with dimensions showing full details of a bridge measured by the student.

COURSES FOR GRADUATES

All primary unless otherwise stated. Each 1 credit.

RAILWAY ENGINEERING

101. Location and Construction.
102. Railway Track and Structures, and their Maintenance.
103. Yards and Terminals.
104. Motive Power and Rolling Stock.
105. Signal Engineering.
106. Railway Operation and Management.

BRIDGE ENGINEERING

107. Bridge Designing.
108. Cantilever and Swing Bridges.
110. Metallic Building Construction.
111. Roof Construction.
112. Stereotomy.

WATER-SUPPLY ENGINEERING

114. Tanks, Stand Pipes, and Reservoirs.
115. Sources and Requirements of Water Supply for a City and Removal of Impurities.
117. Pumps and Pumping.
118. General Water Works Construction.
119. Biological and Chemical Examination of Potable Water.
120. Description of Water Supply Systems—Secondary.

SEWERAGE

121. Sewage Purification.
122. Sewage Disposal Works.
123. General Sewerage Design and Construction.
124. City Sanitation.
125. Description of Sewerage Systems—Secondary.

ROAD ENGINEERING

MISCELLANEOUS SUBJECTS

128. Practical Astronomy.
129. Description of Work Done.
130. Critical Description of Engineering Construction.
131. Translation of Technical Engineering Work from French or German.
133. Any Primary in Mathematics, Mechanical Engineering, or Electrical Engineering—Secondary.

DRAWING, GENERAL ENGINEERING

1. ELEMENTS OF DRAUGHTING.—This term's work is designed as a general preparation for draughting in all
branches. Its aim is, first, to teach the accurate and intelligent use of instruments and materials; and, second, to start the student upon his work with those neat and orderly habits that are invaluable to the competent draughtsman.

The instruction is given by lectures and reference to books in the University library. The problems are arranged so as to be of the most practical benefit to the student, and, instead of being copies of similar problems, are designed to throw him upon his own ingenuity in applying his knowledge of principles learned. This work includes geometrical constructions; orthographic, isometric, and cabinet projections of objects from models or given data; drawings finished in line shading and water-colors, in all about thirty plates. Lectures and Notes. Fall term, two-fifths study. Mr. Phillips and Mr. Vial.

2. Descriptive Geometry.—The first term's work in this study includes problems on the point, line, and plane, and some of the simpler geometrical solids. The second term's work takes up plane, single-curved, double-curved, and warped surfaces; the generation and development of the same; sections and intersections, and shades and shadows. The application of principles and methods in numerous and varied practical problems is a large part of the work in each term, comprising in all the drawing of about thirty-nine plates. MacCord's Descriptive Geometry. Winter term, full study; spring term, half study. Mr. Phillips and Mr. Vial.

Required. General Engineering Drawing 1, 4.

3. Lettering.—Plain and ornamental alphabets; round and stump writing; titles and title pages. Spring term, half study. Mr. Phillips and Mr. Vial.

Required. General Engineering Drawing 1, 4.

4. Sketching.—In orthographic, isometric, and cabinet projections. Architectural sketch plans and details; machines, machine parts, and mechanism. Lectures and Notes. Fall term, three-fifths study. Mr. Phillips and Mr. Vial.

5. Advanced Descriptive Geometry.—Curved lines of the higher orders; higher single curved, warped and double-curved surfaces. MacCord's Descriptive Geometry, with references to Warren's General Problems from the Orthographic
Projections of Descriptive Geometry. *Spring term, one-half study.* Mr. Phillips.

Required: General Engineering Drawing 1, 2, 4.

ECONOMICS

1. **Principles of Economics (Elementary Course).**—This course is preliminary to all others. It is intended to serve as an introduction to the courses which follow and also to give a general survey of the field of the science for the benefit of those who cannot pursue the subject further. *Fall and winter terms, full study, four times a week.* Professor Kinley.

 Required: Economics 1. *(Not given in 1896-97.)*

2a. **Money and Banking.**—In this course a study of the history and functions of money is followed by a critical study of the monetary and banking history of the United States and of such topics as the theory of prices, credit, government paper, etc. The method pursued is that of Economics 2, supplemented by lectures. *Spring term, full study.* Professor Kinley.

 Required: Economics 1.

3. **Public Finance.**—The purpose of this course is the historical, comparative, and critical study of the methods and purposes of public expenditure, and of the different sources of revenue, and also the discussion of public debts, their placement, refunding, and redemption. Those who enter the course must take both terms' work. Graduate students will receive credit as such for the course, provided they have had U.—11
Economics 1 and 2, or their equivalent, do additional reading assigned in Wagner, Cohn, Beaulieu, and other writers, and also prepare one extended paper, or two shorter ones, on topics connected with the course. *Fall and winter terms,* three-fifths study. Professor Kinley.

Required: Economics 1.

3a. **Financial History of the United States.**—This course begins with Hamilton’s administration of the treasury. It deals with the growth and management of the national debt, and with the industrial expansion and the tariff history of the country. While the necessary logical separation is observed in the treatment of these subjects, their intimate connection is also emphasized and the economic development of the country as a whole is studied. The course may be taken as a graduate course on conditions similar to those laid down in 3. For graduate students the course will be purely investigative. They must, however, attend the lectures and report from time to time the results of their special investigations and summaries of their additional assigned reading. *Fall and winter terms,* three-fifths study. Professor Kinley.

Required: Economics 1. *(Not given in 1896-97.)*

4. **State and Local Taxation in the United States.**—This course is a comparative study of taxation in the various states, and also in the cities so far as they present features of special interest. Special attention is given to taxation in Illinois. Those who take this course should take Political Science 8 at the same time; those in the Political Science group who are specializing in Economics must take it. *Spring term,* three-fifths study. Professor Kinley.

Required: Economics 1. *(Not given in 1896-97.)*

4a. **Taxation.**—The theory of taxation, modes of taxation, incidence, etc., are carefully discussed. *Spring term,* three-fifths study. Professor Kinley.

Required: Economics 3 or 3a.

5. **Railroad Problems.**—This is a short course designed to familiarize the student with the problems of railway management in their economic, social, and legal aspects. Comparison is made of the development of railroad transportation and its regulation in Europe and the United States. Rates,
financial methods of construction, competition, pooling, etc., are discussed, as is also the question of state ownership and management. *Spring term, full study, three times a week. Professor Kinley.*

Required: Economics 1. The course is open, without the requirement in Economics, to students in the College of Engineering who have taken Civil Engineering 4.

6. Sociology.—In this course it is intended to study society in its normal structure. The theories of the nature of society, which have been advanced by various writers, are discussed in the light of the history of social institutions, and an effort is made to formulate some of the laws of social growth. *Fall and winter terms, two-fifths study. Professor Kinley.*

Required: some course in history or general biology.

7. Social Pathology.—This is a course in "applied sociology," consisting of as detailed a study of the problems of pauperism and crime as the time will permit, together with a consideration of theories and methods of reform. *Spring term, two-fifths study. Professor Kinley.*

8. Economic Seminary.—Advanced students will be formed into a seminary for investigation and for the study of current economic literature. Students who write their theses in economics must do so in connection with the seminary work. The course counts for two credits, but no credit will be given unless the whole course is taken. *Fall, winter, and spring terms, two hours once each week. Professor Kinley.*

COURSE FOR GRADUATES

101. Principles of Economics (Advanced Course).—This course is a study of economic theory, beginning with the Physiocrats. Special attention is paid to recent development. It is based on Smith, Mill, Cairnes, Marshall, Roscher, Knies, Wagner, Böhm-Bawerk, Clark, and Patten. It is open to seniors who have taken at least two years' work in Economics. The class will meet at least twice a week at the convenience of the instructor and students.
ELECTRICAL ENGINEERING

1. Dynamo-Electric Machinery.—Lectures and Laboratory. Theory, classification, and tests of dynamo-electric machinery. This course is intended for students in Mechanical Engineering, and for others who need only a superficial acquaintance with dynamos and the necessary testing apparatus. Spring term, full study. Assistant Professor Swenson, Mr. Almy.

 Required: Physics 1 and 3.

2. [Omitted.]

3. Dynamo-Electric Machinery.—(1) Lectures on theory of dynamo-electric machinery, particularly direct-current machines. (2) Experimental study of dynamo-electric machinery, particularly direct-current machines. (3) Electrical designing and drafting. Fall term, full study. Assistant Professor Swenson, Assistant Professor Esty, and Mr. Almy.

 Required: Physics 4 and Electrical Engineering 11.

4. Alternating Currents and Alternating-Current Machinery.—(1) Lectures on the theory and application of alternating currents. (2) Experimental study of alternating currents and alternating-current machinery. (3) Electrical designing and draughting. Winter and spring terms, full study. Assistant Professor Swenson, Assistant Professor Esty, and Mr. Almy.

 Required: Electrical Engineering 3.

5. Photometry.—Lectures and Laboratory. Study of arc and incandescent lamps in connection with their use in electric lighting. Winter term, half study. Assistant Professor Swenson, Mr. Almy.

 Required: Electrical Engineering 3.

6. Electric Communication.—Lectures and practice. This course includes the theory of the telephone, the telegraph, and electric-signaling devices, and the construction, protection, and operation of lines. Winter term, full study. Assistant Professor Esty.

 Required: Electrical Engineering 3.

Required: Electrical Engineering 3.

8. LIGHTING PLANTS.—Lectures and draughting. This course includes the construction and use of arc and incandescent lamps; the methods of wiring for arc and incandescent lighting; rules and regulations, the equipment, and management of electric-lighting stations; estimates. Spring term, full study. Assistant Professor Esty.

Required: Electrical Engineering 4, 5.

9. ELECTRICAL TRANSMISSION OF POWER.—Lectures and draughting. This course includes the construction, equipment, and operation of electric railways and stations; the utilization of water power; long distance transmission; applications of electricity in various engineering operations; estimates. Spring term, full study. Assistant Professor Esty and Mr. Almy.

Required: Electrical Engineering 4 and 5.

10. SEMINARY.—Critical Discussion of current periodical literature of theoretical and applied electricity. Fall, winter, and spring terms, once a week. Assistant Professor Swenson.

Required: Two terms of Physics 4.

COURSES FOR GRADUATES

PRIMARY

101. Mathematical Theory of Electricity and Magnetism, 1, 2, or 3 credits.
102. Absolute Measurements in Electricity and Magnetism, 1, 2, or 3 credits.
103. Dynamo Electric Machinery, 1, 2, or 3 credits.
104. Electrical Transmission of Power, 1, 2, or 3 credits.
105. Electro-Metallurgy, 1, 2, or 3 credits.
106. Photometry, 1, 2, or 3 credits.
107. Calorimetry, 1, 2, or 3 credits.
108. Economy of Production and Utilization of Electrical Energy, 1 credit.
109. Consulting Engineering, 1 credit.

SECONDARY

110. Mathematics, 1, 2, or 3 credits.
111. Physics, 1, 2, or 3 credits.
112. Language, 1, 2, or 3 credits.
113. Chemistry, 1, 2, or 3 credits.
114. Architectural Engineering, 1, 2, or 3 credits.
115. Civil Engineering, 1, 2, or 3 credits.
116. Municipal and Sanitary Engineering, 1, 2, or 3 credits.
117. Mechanical Engineering, 1, 2, or 3 credits.
118. Translation of Technical Engineering Works, 1, 2, or 3 credits.

ENGLISH LANGUAGE AND LITERATURE

1. General Survey of English Literature.—Prescribed for sophomore year in College of Literature and Arts. Fall, winter, and spring terms, two-fifths study. Assistant Professor Katharine Merrill.

2. Prose Writers of the Eighteenth and Nineteenth Centuries.—Fall, winter, and spring terms, three-fifths study. Assistant Professor Katharine Merrill.

3. Poetry of the Nineteenth Century.—Fall, winter, and spring terms, three-fifths study. Assistant Professor Katharine Merrill.

4. Prose Writers of the Sixteenth and Seventeenth Centuries.—Fall, winter, and spring terms, two-fifths study. Professor Dodge.

5. Shakspere and History of the Drama.—Primarily for graduates. Fall, winter, and spring terms, three-fifths study. Professor Dodge.

Required: English 1, 2, 3, and 4.

6. History of English Criticism.—Primarily for graduates. Fall, winter, and spring terms, two-fifths study. Professor Dodge.

Required: English 1, 2, 3, and 4.
7. Seminary: Comparative Modern Fiction.—Open only to senior and graduate students. Fall, winter, and spring terms, one-fifth study. Assistant Professor Katharine Merrill.

8. Old English (Anglo-Saxon) Grammar and Prose.—Fall, winter, and spring terms, three-fifths study. Professor Dodge.

9. Early English.—Fall, winter, and spring terms, two-fifths study. Professor Dodge.

10. Old English Poetry.—Fall, winter, and spring terms, three-fifths study. Professor Dodge.

Required: English 8.

11. Fourteenth and Fifteenth Century Literature.—Fall, winter, and spring terms, two-fifths study. Professor Dodge.

Required: English 8 and 9.

12. History of the English Language.—One hour a week. Fall, winter, and spring terms, two-fifths study. Professor Dodge.

Required: English 8 and 9.

13. Icelandic.—Fall, winter, and spring terms, full study. Professor Dodge.

Required: English 8 and 9, or German 1.

14. Old English Legal Codes.—Special course for students of politics, economics, and history. As an introduction to the course Old English Grammar is studied so far as is necessary for a proper understanding of early phraseology. Primarily for graduates, but open to undergraduates having sufficient preparation. Fall, winter, and spring terms, two-fifths study. Professor Dodge.

Required: One year of history, economics, or sociology, or of English literature.

15. Seminary Methods of English Teaching.—Open to senior and graduate students. Fall, winter, and spring terms, one-fifth study. Professor Dodge and Assistant Professor Merrill.

COURSE FOR GRADUATES

101. Danish.—Full study through the year.
FRENCH

1. ELEMENTARY COURSE.—The course embraces grammatical study, pronunciation, exercises in composition, and conversation. Reading of representative works of modern authors, such as Halévy, Labiche, Daudet, Jules Verne, and others. Fall, winter, and spring terms, full study. Assistant Professors Fairfield and Piatt.

2. NINETEENTH CENTURY.—(1) The class will read works of Mérimée, George Sand, Balzac, Sandeau, Bourget, Hugo, and others. (2) Outlines of French literature. (3) Assigned readings and reports thereon. Fall, winter, and spring terms, full study. Assistant Professor Fairfield.

 Required: French 1 or 5.

3. SEVENTEENTH CENTURY.—(1) Readings from Molière, Corneille, Racine, Lafontaine, Boileau, de Sévigne, and others. (2) Study of French literature and civilization of the century. (3) Advanced composition. (4) Assigned readings. Fall, winter, and spring terms, full study. Assistant Professor Fairfield.

 Required: French 2.

4. EIGHTEENTH CENTURY.—(1) The course will consist of lectures in French, themes, and collateral reading. Reading of selected works of Voltaire, Montesquieu, Rousseau, Chénier, and Beaumarchais. (2) Assigned readings. (3) Themes in French upon subjects connected with the course. Fall, winter, and spring terms, full study. Assistant Professor Fairfield.

 Required: French 3.

5. SCIENTIFIC AND TECHNICAL FRENCH.—Similar to Course 1 for first two terms. In the spring term, this class will be divided into sections for the study of scientific and technical French, suited to the demands of the several colleges, each student working in his own special line. Particular attention will be given to acquiring a technical vocabulary and to rapid reading. Fall, winter, and spring terms, full study. Assistant Professor Piatt.

COURSES FOR GRADUATES

101. OLD FRENCH READINGS.—Clédat, Les Auteurs Français du Moyen Age; Suchier, Aucassin et Nicolete; Gautier,
La Chanson de Roland. Translation and comparison with the modern idiom. Study of the laws of phonetic changes. Lectures upon Old French philology.

102. A Systematic Study of Special Topics.—French poets of the sixteenth century. Malherbe; his school and his influence. Sacred eloquence of the seventeenth century.

GEOLOGY

1. Geology, Major Course.—(a) Dynamic Geology. The instruction given under this head is intended to familiarize the student with the forces now at work upon and within the earth's crust, modeling its reliefs, producing changes in the structure and composition of its rock masses and making deposits of minerals and ores. A series of localities is studied in which great surface changes have recently taken place, with a view to ascertaining the character of the forces producing such changes, and the physical evidence of the action of like forces in the past. The subject is taught by lectures, and is abundantly illustrated by maps, models, charts, and views.

(b) Petrographic Geology. The instruction under this topic is given by lectures and laboratory work. The subjects included are the classification of rocks, the methods used in their determination, the conditions governing the formation of each species, the decompositions to which they are liable, and the products of these decompositions. Each student is supplied with a set of blowpipe tools and reagents and a series of hand specimens covering all the common species of rocks.

(c) Historical Geology. The work on this subject is substantially an introduction to the history of geology as a science, and the developmental history of the leading geological doctrines. So far as may be done with the data in hand; an attempt is also made to trace the history of each geological period.

(d) Paleontology. The scheme of instruction in this subject places before the student the classification adopted for those organic forms occurring as fossils, together with the succession of the various groups that occur in the strata, with the cause, as far as known, for their appearance and disappearance. The student is required to familiarize himself with selected groups of paleozoic fossils, abundant illustrations of
which are placed in his hands. The subject is presented in lectures and demonstrations, each group being considered in connection with its nearest living representative.

(e) Economic Geology. The final term of this course is devoted to a study of the uses man may make of geologic materials, the conditions under which these materials occur, and the qualities which render them valuable. The instruction is given by lectures, with reference to the various state and government reports, transactions of societies, and monographs in which these subjects are treated, as well as by demonstrations with materials from the collections of the University.

In dynamic and historical geology Dana's manual is used as a reference book, and in economic geology Tarr's Economic Geology of the United States. Petrography is pursued by means of a blue-print adaptation of Rosenbusch for the crystalline rocks, and various authors for the fragmental. In paleontology Nicholson and Zittel are used for descriptions of the larger groups, Miller for general distribution, and the various state surveys for species. Winter, spring, and fall terms, full study. Professor Rolfe and Mr. Mosier.

Required: Chemistry 3b; Mineralogy 1.

2. INVESTIGATIONS AND THESIS.—For students who select a geological thesis guidance and facilities will be afforded for individual investigations in the field and laboratory. Fall, winter, and spring terms, full study. Professor Rolfe.

Required: Geology 1.

3. ENGINEERING GEOLOGY (for engineers only).—It is the object of this course to bring together those parts of geology which will be of the greatest practical benefit to an engineer. The course will deal mainly with subjects connected with the origin, classification and transformation of rocks, with the principles which govern the deposition and structure of rock masses; with the conditions under which the useful rocks and minerals occur, and the conditions which make them more or less valuable. The instruction is given by lectures and by demonstrations in the laboratory. Spring term, full study. Professor Rolfe and Mr. Mosier.

4. GENERAL GEOLOGY, MINOR COURSE.—This course includes a selection of such geological facts and theories as should be known to every intelligent person. With such
discussion of them as the time will permit. The subjects treated will be fully illustrated, and opportunity will be afforded for some study of rocks and fossils. **Winter term, full study.** Professor Rolfe.

COURSES FOR GRADUATES

101. **Paleontology.**—A critical and comparative study of the fossils found in the rocks of Illinois.

102. **Economic Geology.**—The effects which variations in the chemical composition and physical constitution of inorganic substances used in the arts have on the qualities of the manufactured product, and should have on methods of manufacture. A critical examination of the tests now employed in determining the qualities of building stones.

GERMAN

1. **Elementary Course.**—For students in the College of Literature and Arts. Joynes-Meissner's Complete German Grammar, Storm's Immensee, Gerstaecker's Germelshausen, Stoekl's Unter dem Christbaum, Jensen's Branne Erica, etc. **Fall, winter, and spring terms, full study.** Professor Snyder and Mr. R. P. Smith.

2. **Composition and Classic Reading.**—For students in the College of Literature and Arts. Goethe's Iphigenie; Hermann und Dorothea, or Torquato Tasso; Schiller's Wilhelm Tell; Maria Stuart, or Jungfrau von Orleans. Modern Prose: Stifter's Das Haidedorf; Fouqué's Undine; Scheffel's Ekkehard; Freytag's Aus dem Staat Friedrich's des Grossen; Schiller's Gustav Adolph in Deutschland, etc. **Fall, winter, and spring terms, full study.** Professor Snyder.

Required: German 1.

3. **Critical Study of Modern German Literature.**—For students in College of Literature and Arts. Bernhardt's Goethe's Meisterwerke, Lessing's Nathan der Weise, Minna von Barnhelm; Schiller's Wallenstein,
Buchheim’s Deutsche Lyrik, etc. Lectures, Composition, and Conversation. Assigned readings from modern authors and reports thereon. Fall, winter, and spring terms, full study. Professor Snyder.

Required: German 1 and 2.

4. Ancient Language.—Middle High German, Old High German, and Gothic Grammar and Reader (Wright’s). Lectures on the history of the language and its early literature. The study is conducted in German. For students in the College of Literature and Arts. Fall, winter, and spring terms, three times a week, full study. Professor Snyder.

Required: German 1, 2, and 3.

5. Scientific and Technical Reading.—For students in the Colleges of Science and Engineering. Joynes-Meissner’s Shorter German Grammar, Storm’s Immensee, Gerstaecker’s Germelshausen, Stoekl’s Unter dem Christbaum. Fall and winter terms, full study. In the spring term the classes will be divided into sections for the study of scientific and technical German, each student reading in his own special line. Particular attention given to the acquisition of a technical vocabulary and rapid reading. Spring term, full study. Mr. R. P. Smith.

6. Advanced Scientific and Technical Reading.—Special Reading, more advanced than in third term of course 5, and on same plan. Winter and spring terms, full study. Mr. R. P. Smith.

Required: German 1 or 5.

Greek

1. Selections from Herodotus, with readings from Thucydides for comparison of style and historic method. Studies in Ionic etymology. Greek Prose once a week, with particular reference to the syntax of the verb. Fall term, full study. Professor Moss.

Required: Greek 1.

4. Xenophon's Memorabilia.—Lectures upon the work and influence of Socrates as a public teacher, with collateral readings upon assigned topics. Fall term, full study. Professor Moss. Required: Greek 1, 2, 3.

5. Plato.—One entire dialogue and selections from others. Studies in the rhetoric and idiom of the author. Discussion of his philosophical views, so far as illustrated in the pieces read. Winter term, full study. Professor Moss. Required: Greek 1, 2, 3, 4.

7. Homer.—Two or three books of the Iliad will be read by the class in common, and made the basis for some preliminary studies, when special readings in the text will be assigned to each student, and papers prepared by them upon suitable topics. Such papers will be read before the class and discussed. Fall term, full study. Professor Moss. Required: Greek 1, 2, 3, 4, 5, 6.

8. Homer.—Continuation of course 7. Winter term, full study. Professor Moss. Required: Greek 1, 2, 3, 4, 5, 6, 7.

9. Old Greek Life.—Course of semi-weekly lectures upon old Greek life, political, social, etc. For those who take the lectures and minimum reading, half study; for others, full study. Spring term. Professor Moss.

COURSES FOR GRADUATES

101. Greek Lyric Poetry.
102. Plato.

HISTORY

1. Mediæval and Modern European History.—Elementary, introductory course. Fall, winter, and spring terms,
three-fifths study. Associate Professor Greene and Assistant Professor Hammond.

2. Historical Introduction to Contemporary Politics.—Constitutional and political tendencies of the nineteenth century, as represented by the political parties of England, the United States, France, and Germany. Fall, winter, and spring terms, two-fifths study. Associate Professor Greene and Assistant Professor Hammond.

3. American History.—The origin and growth of the nation from the beginning of English Colonization in America to the close of the Reconstruction period. Fall, winter, and spring terms, full study. Students may, however, enter the course at the beginning of the winter term, omitting the colonial era. Associate Professor Greene.

Required: History 1 or 2.

4. English Constitutional History.—Fall, winter, and spring terms, three-fifths study. Assistant Professor Hammond.

Required: History 1.

5. Europe in the Sixteenth Century.—The Protestant Reformation and the Counter-reformation. Fall term, three-fifths study. [Omitted after 1895–96.]

7. Modern European History.—Europe from the age of Louis XIV. to the present time. Fall, winter, and spring terms, three-fifths study. [Not given in 1895–96. Courses 7 and 12 will be given in alternate years.] Associate Professor Greene.

Required: History 1.

8. Seminary in American History.—Training in the use of the sources. Fall, winter, and spring terms, two-fifths study. Associate Professor Greene. Course 8 is open to graduates and also to seniors of high standing who take or have taken History 3.

9. Seminary in Mediæval History.—Topics to be arranged. Students who take this course will be expected to take History 10 also. Fall, winter, and spring terms, two-fifths study. Assistant Professor Hammond.

10. European History from 800 to 1300.—A study of
the period most fitly termed "mediæval," and of its characteristic institutions. Fall and winter terms, three-fifths study. Assistant Professor Hammond.

Required: History 1.

11. Europe in the Fourteenth and Fifteenth Centuries.—The transition from the middle ages to the modern world. Spring term, three-fifths study. Assistant Professor Hammond.

Required: History 1.

Required: History 1.

COURSES FOR GRADUATES.

101. Seminary in American History.
102. Seminary in Mediæval History.

HORTICULTURE

1. Introductory Course.—This course is intended to give a general idea of horticultural work such as all students of agriculture should have, and, at the same time, to prepare those who wish it for more advanced work along the same lines.

Studies are made in the planting and care of nurseries, orchards, vineyards, small fruits, gardens, and ornamental grounds. Students are given practice in propagating by grafts, buds, cuttings, seeds, etc.; in the pruning, training, or other management of different fruits, in transplanting and in the preparation and use of remedies against insects and diseases. Barry’s Fruit Garden, lectures, reference reading, and laboratory work. Fall term, two-fifths study, and spring term, three-fifths study. Mr. McCluer.

2. Fruit Culture.—Orchards, vineyards, small fruit plantations and their products constitute the main subjects of this term’s work. Lectures are given upon propagating, planting, and cultivating trees and vines; upon identifying, classifying, and preserving fruits, and upon diseases and remedies. Studies are made upon illustrative material in the laboratory, and visits
to the orchards and plantations form a part of the instruction. *Fall term, full study.* Mr. McCluer.

3. Forestry.—This course embraces a study of forest trees and their uses, their natural distribution, and their artificial production. The relations of forest and climate are studied, and the general topics of forestry legislation and economy are discussed. *Lectures.* *Winter term, two-fifths study.* Professor Burrill.

4. Plant Houses and House Plants.—This study includes gardening and landscape architecture; the methods of construction, heating, and ventilation, and general management of greenhouses, and the study of the kinds, propagation, growth and care of flowering plants. Each student has practice in propagating by cuttings and otherwise, in potting and shifting, and in care of plants requiring various treatment. Insects and diseases, with remedies, are treated, and the means of securing vigor of growth and abundance of flowers are studied and illustrated by practice. *Henderson's Practical Floriculture.* *Winter term, three-fifths study.* Mr. McCluer.

5. Gardens.—Kitchen and market gardens are made the first subjects of study, after which ornamental and landscape gardening occupies the time. *Henderson's Gardening for Profit; Long's Ornamental Gardening.* *Spring term, full study.* Mr. McCluer.

6. Plant Propagation.—The modification of plants under cultivation, and the methods of securing and perpetuating desirable variations; self- and cross-fertilization; fertilization with much or little pollen; hybridization; seeds of different degrees of maturity, size, etc.; bud variation and graft hybrids; bud and graft unions; influence of stock on cion, and cion upon stock; whole and piece roots. In this course some account is given of what has been done and an attempt is made to reach conclusions as to what may be done in the line of the subject. Lectures, reference readings, and laboratory work. *Fall term, full study.* Professor Burrill and Mr. McCluer.

Required. Botany 1.

ITALIAN

1. Grammar and Reading.—Grandgent's Italian Grammar, reading of modern authors; Dante's Divina Commedia,
outlines of Italian literature. *Fall, winter, and spring terms, full study.* Assistant Professor Fairfield.

LATIN

1. **Livy.**—Selections from the XXI. and XXII. books. Eutropius. Latin composition based on the text. The main object of this course is to secure accuracy in pronunciation and facility in reading easy Latin. *Fall term, full study.* Professor Barton.

 Required: Latin I.

 Required: Latin 1, 2.

 Required: Latin 1, 2, 3. This course will be given in alternate years with course 5. [Not given in 1896–97.]

5. **Horace.**—Satires and Epistles. Especial reference to the private life of the Romans in the time of Augustus. *Fall term, full study.* Professor Barton.

 Required: Latin 1, 2, 3.

6. **Tacitus.**—Agricola and Germania. Agricola will be considered both from the standpoint of biography, and also as an introduction to the constructions and style of Tacitus. Germania, in connection with Cæsar’s account of the customs of the Germans. *Winter term, full study.* Professor Barton.

 Required: Latin 1, 2, 3.

7. **Plautus.**—Captivi and Pseudolus. Assigned readings and themes on the leading characters of the plays and on the social conditions indicated. *Spring term, full study.* Professor Barton.

 Required: Latin 1, 2, 3.

8. **The Roman Historians.**—Readings from Cæsar, Sallust, Livy, and Tacitus. The aim of the course is partly grammatical,
and partly devoted to study of differences in style and method of treating historical themes. *Fall term, full study.* Professor Barton.

Required: Latin 1, 2, 3.

10. TEACHERS' Course.—Study and discussion of the aims and essentials of preparatory Latin, methods of presentation, and difficulties to be met. Students will do the work of a preparatory class and at intervals will take charge of the recitation. *Spring term, full study.* Professor Barton.

COURSES FOR GRADUATES

101. CATULLUS.—Selected readings. The position of Catullus and Horace in lyrical poetry; the indebtedness to Catullus of Horace, Virgil, and the elegiac poets.

102. THE ELEGiac Poets.—Selections from Ovid, Propertius, and Tibullus.

103. ROMAN LITERARY PROSE Style.—Selected readings to trace in a connected manner the characteristics of prose style under the Republic, during the time of Augustus, and under the early empire.

MATHEMATICS

1. ADVANCED ALGEBRA.—For students in the Colleges of Agriculture, Science, Literature, and Arts. Functions and their notations; series and the theory of limits; imaginary quantities; general theory of equations. Topical reviews of all preceding algebraic processes. *Wells's College Algebra.* *Fall term, full study.* Mr. Gunn and Mr. Ketchum.

2. ADVANCED ALGEBRA.—For students in the college of Engineering. Principles of small practical value are subordinated to those of higher utility. Accuracy and dispatch in the use of principles are continually emphasized. A topical review of the principles of elementary algebra is made from time to time. This review is sometimes made by requiring students to solve practical problems illustrative of principles
not well understood. Some of the most important subjects in which instruction is given are functions and their notation; the progressions; theory of numbers; permutations and combinations; probabilities; convergency and divergency of series; summation of series; undetermined coefficients; doctrine of limits; logarithms and general theory of equations. Wells's *College Algebra*. Fall term, full study. Mr. Burnham.

3. **Trigonometry.**—For students in the Colleges of Literature and Arts, Science, and Agriculture. Trigonometry, plane and spherical; fundamental relations between the trigonometrical functions of an angle or arc; relations between the functions of different angles or arcs; construction and use of tables; solution of triangles; angles as functions of sides, and sides as functions of angles; applications. Jones’s *Trigonometry*. Winter term, full study. Mr. Gunn and Mr. Ketchum.

Required: Math. 1.

4. **Trigonometry.**—For students in College of Engineering. The ratio system is studied chiefly, but the necessary connection between it and the line system is carefully proved and illustrated. Students are frequently required to demonstrate the same proposition, using first the line values, then the ratio values of the functions. The subjects taught are the circular measurement of angles, general formulas of plane and spherical trigonometry, relations between functions of multiples of 90° plus or minus an angle, solution of right and oblique plane triangles, of spherical, right, and oblique triangles, Napier’s rules and analogies, and practical applications of principles to the solution of astronomical problems. Teaching is in part by text-book, and in part by assigning principles to be demonstrated and problems to be solved outside of the text-book. Jones’s *Trigonometry*. Winter term, full study. Mr. Burnham.

Required: Math. 2.

5. **Conic Sections** (Geometrical Method).—Definitions and general properties of the ellipse, hyperbola, and parabola, curvature of the conic sections; elements of analytical geometry. Properties and relations of the point and right line in a plane, and of the conic sections. Cockshott & Walters’s *Geometrical Conics*. Spring term, full study. Mr. Gunn.

Required: Math. 1, 3.
6. **Analytical Geometry.**—The aim is to acquaint the student with analytical methods of investigation and to familiarize him with some of the most recent developments in synthetic geometry; to make him more skilful in the use of algebraic processes, especially as a means of demonstrating geometric properties of loci. Subjects considered are the elementary theory of the point and right line in a plane; use of abbreviated notation; elementary theory of the conic sections, their equations and properties developed analytically; poles and polars; synthetic geometry of the circle, and the discussion of the general equation of the second degree. *Wood’s Coördinate Geometry.* *Spring term, full study.* Mr. Burnham.

Required: Math. 2, 4.

7. **Differential Calculus.**—Variables and functions; limits and infinitesimals; differentials and derivatives; differentiation of explicit functions, implicit functions, and functions of several variables; derivatives of higher orders; successive derivatives, developments in series; maxima and minima of functions; indeterminate forms; plane curves, tangents, and normals; asymptotes, singular points, and curve tracing; theory of envelopes, of curvature, of evolutes, and involutes. *Byerly’s Differential Calculus.* *Fall term, full study.* Professor Shattuck.

Required: Math. 2, 4, 6.

8. **Advanced Analytical Geometry.**—Position and direction in space; direction and angles; projections of lines, direction cosines; transformation of coördinates; the general and normal equations of the plane; also in terms of the intercepts; the plane satisfying given conditions; relations of planes to one another; perpendicular distance to a plane; bisectors of dihedral angles; symmetrical equations of a straight line; condition that a line shall be parallel to a plane; equation of the common perpendicular to two given lines; condition of intersection; a quadric surface; conjugate axes and planes; classes of quadrics; tangent and polar lines, and planes to a quadric; surfaces derived from generating curves; the equations of the helix; the conoid. *Wood’s Coördinate Geometry.* *Winter term, full study.* Professor Shattuck.

Required: Math. 2, 4, 6, 7.

9. **Integral Calculus.**—Elementary forms of integration; integrals immediately reducible to the elementary forms;
integration by rational transformations; integration of irrational algebraic differentials; integration of transcendent functions; definite integrals; successive integration; differentiation under the sign of integration; integration by means of differentiating known integrals; double integrals; triple and multiple integrals; product of two definite integrals.

Rectification and quadrature; the parabola, the ellipse, the cycloid, the Archimedean spiral, the logarithmic spiral, the limniscate, the cycloid, quadrature of surfaces of revolution and of surfaces in general; cubature of volumes; the sphere, the pyramid, the ellipsoid, any solid of revolution, and of volumes in general. Byerly's Integral Calculus. Spring term, full study. Professor Shattuck.

Required: Math. 2, 4, 6, 7, 8.

10. Theory of Equations.—The development of the general properties of equations; relations of the roots and the coefficients of an equation, with applications to symmetric functions; transformation of equations; solution of reciprocal and binomial equations; algebraic solution of cubics and biquadratics; properties of derived functions; the limits and separation of the roots of equations; the solution of numerical equations of the nth degree. Burnside and Panton's Theory of Equations. Fall term, full study. Associate Professor Townsend.

Required: Math. 2, 4.

11. Theory of Determinants.—The origin and notation of determinants, properties of determinants, determinant minors, multiplication of determinants, determinants of compound systems, determinants of special forms—Jacobians, Hessians, Wronskians—with applications to algebra, including linear transformations, and to analytic geometry. Weld's Theory of Determinants with selected chapters from Scott's Theory of Determinants. Winter term, full study. Associate Professor Townsend.

Required: Mathematics 2, 4, 6, 7.

12. Theory of Invariants.—The course will cover the general development of the theory of invariants, both from the geometric and from the algebraic side. Applications of invariants will be made to systems of conics and to Higher Plane Curves. Bruno's Bildiren Formen will be followed in part, but frequent use will be made of Clebsch's Geo-
182 GENERAL DESCRIPTION OF COURSES

metrical. Spring term, full study. Associate Professor Townsend.

Required: Math. 7, 10, 11.

13. Theory of Functions.—By way of introduction, considerable attention will be given to the geometric representation of the complex variable, including Argand’s diagram, conformal representation, and harmonic ratios, and bilinear transformation. This will be followed by the development of the theory of infinite series, algebraic and transcendental functions, integration of uniform functions, Riemann’s surfaces, etc. Durège’s Theory of Functions and Collateral Reading. Fall term, full study. Associate Professor Townsend.

Required: Math. 8, 9, 12.

14. Method of Least Squares.—The object of this course is to present the fundamental principles of the subject, in a manner so plain as to render them intelligible and useful to students of astronomy and engineering. The following subjects will be studied: Law of probability and error, adjustment of observations, precision of observations, independent and conditioned observations, etc. Merriman’s Least Squares. Fall term, three hours per week. This, with Astronomy 3, two hours per week, makes a full study. Associate Professor Myers.

Required: Mathematics 7, 8, 9.

15. Seminary and Thesis.—Fall, winter, and spring terms, two-fifths study.

16. Differential Equations.—This subject is designed for students in the courses of engineering and mathematics and astronomy. It will embrace the following topics: General linear equations with constant coefficients, special forms of differential equations of higher order, integration of series, etc. A. R. Forsyth’s Differential Equations. Winter and spring terms, three hours per week. This, with Astronomy 3 of winter and spring terms, constitutes a full study. Associate Professor Myers.

Required: Math. 7, 8, 9.

17. Analytic Geometry of Space.—A general review will be given of the position of the plane and the right line in space and the more general properties of surfaces of the second degree. To this will be added the classification of quadrics, special properties of quadrics, foci, and confocal surfaces,

Required: Math. 7, 8, 11.

18. Higher Plane Curves.—The course is designed to cover the general properties of Algebraic curves, including the theory of multiple points and tangents, curve tracing, poles and polars, and reciprocal curves; to which will be added envelopes, cubics and quadrics, transcendental curves, transformation of curves, and the general theory of curves. Lectures with Collateral Reading. Spring term, full study. Associate Professor Townsend.

Required: Math. 8, 9, 12.

19. Solid and Spherical Geometry.—This is the course prescribed for the students in the College of Literature and Arts. Spring term, full study. Mr. Ketchum.

MECHANICAL ENGINEERING

1. Shop Practice.—In the shops the students are advanced in the work as fast as their ability will permit. The work, as far as possible, is carried along the same lines as those practised in our leading commercial shops. The exercises are, in general, chosen from parts of machines under construction, being carefully graded according to the skill of the student. The policy of the department is to give the student every possible advantage and to teach him to produce accurate work in the shortest possible time. Beginning with the care and use of the tools with which he is to work, the student is carried through the various operations of machine-shop practice. The following outlines the work in the several shops as laid down for the regular classes, the work of the several terms being subject to transposition.

First Term, Wood Shop.—Primary exercises relating to the use and care of tools, and the construction of a series of exercises in joint work and turning, preparatory to pattern making.

Second Term, Wood Shop.—The work of this term is devoted largely to the making of patterns and core boxes,
184

GENERAL DESCRIPTION OF COURSES

particular attention being given to the principles of molding.

Third Term, Foundry.—The student here receives instruction in the management of the cupola and molding, including green and dry sand core making. *Fall, winter, and spring terms, full study.* Mr. Curtiss and Mr. Wilson.

2. Shop Practice.—First Term, Forge Shop.—Instruction is given in the forging and welding of iron and steel, special attention being given to the forging and tempering of lathe and planer tools, annealing, and case hardening.

Second Term, Machine Shop.—During this term the student receives instruction in chipping, filing, and elementary lathe and planer work.

Third Term, Machine Shop.—Lathe, planer, drill, shaper, or bench work. *Fall, winter, and spring terms, half study.* Mr. Clark and Mr. Jones.

3. Shop Practice and Laboratory.—First Term, Machine Shop.—Lathe, planer, milling machine, grinding machine, or bench work.

Second Term, Machine Shop.—Advanced work on any of the machines in the shop, or erecting and fitting. *Fall and winter terms, half study.* Assistant Professor Vander-voort, Mr. Clark, Mr. Curtiss, and Mr. Jones.

Third Term.—Mechanical Engineering Laboratory.—This is the beginning of the work in the mechanical engineering laboratory. The course is designed to meet the needs of the student in electrical engineering and to acquaint him with the various instruments and methods used in engine and boiler testing. Considerable work is done with the indicator, and a study of diagrams obtained under different conditions is undertaken. *Spring term, half study.* Professor Breckenridge and Mr. Wood.

Required: Mechanical Engineering 1, 2, 5, 6.

4. Elements of Machine Design.—The basis of this work is found in Klein's *Elements of Machine Design.* A series of plates 26x40 inches is constructed, covering a wide range of machine parts. There are 334 formulas, empirical and rational, the use and derivation of which are explained. By means of a large number of practical examples, sufficient drill is obtained in using them to enable the student to make the calculations required when designing such parts of machines as screw threads, nuts and bolts, rivets and riveted
joints, keys, connecting-rod ends, belts, pulleys, stepped cones, shafts, end and neck journals, pivots, and bearings for rotating pieces. Problems relating to gearing are taken up, such as exact and approximate methods of laying out profiles of teeth, proportions of teeth for strength and durability; circular and diametral pitch; cast and cut gears; sizing of blanks; gear cutters; wooden teeth; spur, bevel, and worm gearing, and proportions of worm gearing for highest efficiency. *Fall, winter, and spring terms, half study. Mr. Goodenough.*

Required General Engineering Drawing 1, 2, 3, 4.

Required: Math. 2, 4, 6; Mechanical Engineering 1, 2, 4.

6. **STEAM ENGINES AND BOILERS.**—A study of the details of modern engines and boilers and of the principles involved in their construction and operation. Text-books used are: *The Steam Engine, Holmes,* and *A Treatise on Steam Boilers, Wilson-Flather.* Winter term, full study. Mr. Wood.

Required: Math. 2, 4, 6; Theoretical and Applied Mechanics 1.

7. **THERMODYNAMICS.**—The fundamental principles underlying the transformation of heat into work, more especially as exemplified in the steam engine, are carefully studied. Considerable attention is paid to the solution of numerous examples, such as will arise in steam, air, or gas engineering. Drill is given in the rapid and accurate use of standard steam tables. *Fall term, full study. Professor Breckenridge.*

Required: Math. 7, 8, 9; Theoretical and Applied Mechanics 1; Physics 1, 3.

8. **MECHANICS OF MACHINERY.**—This is a study of the theoretical principles involved in the construction of such machinery as comes under the head of hoisting apparatus,
pumping engines, air compressors, fans, blowers, machinery for transmitting power, locomotives, pile drivers. *Winter and spring terms, full study.* Professor Breckenridge.

** REQUIRED: ** Math. 7, 8, 9; Theoretical and Applied Mechanics 1, 2, 3; Mechanical Engineering 5, 6, 7, 11.

9. **Machine Design.**—This work follows the design of a high-speed steam engine, and comes under two heads.

Advanced Design: Under this head the work begins with simple machines and extends to more difficult designs as the student progresses. The design of attachments to existing machines, or the complete design of some machine that can be built in the shops, is often a part of this work. Such designs as hoists, pumps, drills, lathes, shapers, water motors, etc., are undertaken, and the student gains the same information that he would in commercial offices for this kind of work.

Original Design: In this work the student's previous training in designing is combined with his inventive ability, and often valuable and ingenious work is done. The machines are to be designed for accomplishing a certain prescribed work. Often but a single piece is handed the student, and a machine is required to produce a given number of these pieces per hour.

A large amount of study of existing machines is required. The student is taught to consult the standard works on designing, such as Unwin, Reuleaux, Klein, Marks, Richards, and to use such pocket books as Kent, Nystrom, Haswell, Taschenbuch der Hütte, etc. *Winter and spring terms, full study.* Assistant Professor VanDerVoort and Professor Breckenridge.

** Required: ** Math. 7, 8, 9; Theoretical and Applied Mechanics 1, 2, 3; Mechanical Engineering 1 to 8, and 11.

10. **Estimates.**—Calculations and estimates are made as to the cost of machinery, power, plants, boilers, chimneys, systems of piping, engines and their foundations, different methods of power transmission.

Also forms of contracts and specifications are studied. *Spring term, full study.* Assistant Professor VanDerVoort.

** Required: ** Math. 7, 8, 9; Theoretical and Applied Mechanics 1, 2, 3; Mechanical Engineering 1 to 6, 9, 11, 12.

11. **Valve Gears and Steam-Engine Design.**—Under this head the steam engine is carefully studied in all its details. A series of plates is drawn showing for the minimum, average, and
maximum horse power the pressure of steam on the piston at all points of the stroke, the pressure at cross head, crank pin, crank shaft at all crank angles; taking into account the forces of inertia combined with the steam pressures—counterbalancing crank disc, weight of fly wheel. Each part of a complete engine is designed, and detailed drawings made and traced, so that each member of the class may have a complete set of blue prints. The work in valve gears will be done partly by recitations and partly by drawing room work. The application of graphical diagrams as an aid in the study and design of valves for engines is carefully brought out. Fall term, full study. Assistant Professor VanDervoort.

 Required: Math. 7, 8, 9; Theoretical and Applied Mechanics 1, 2; Mechanical Engineering 1 to 7.

12. MECHANICAL ENGINEERING LABORATORY.—This work is a continuation of the work begun during the last term of the junior year. It consists of a study of such instruments as are found in the mechanical engineering laboratory, methods of using and calibrating scales, thermometers, gauges, indicator springs, planimeters, counters, calorimeters, brakes, etc. Experiments are made with engines, pumps, injectors, boilers, motors, etc., to determine under what conditions they may be expected to give a maximum efficiency. A limited amount of commercial testing may be undertaken. Tests of plants in the vicinity are made a feature of this work. Carefully prepared reports are always required. Special investigations and research are undertaken as far as possible. Fall and winter term, full study. Professor Breckenridge and Mr. Wood.

 Required: Math. 7, 8, 9; Theoretical and Applied Mechanics 1, 2, 3; Mechanical Engineering 1 to 7, 11.

COURSES FOR GRADUATES

 PRIMARY

101. Advanced Machine Design, 1, 2, or 3 credits.
102. Graphics and Kinematics, 1 credit.
103. Mill Engineering, 1 credit.
104. Steam Engineering, 1, 2, or 3 credits.
105. Experimental Engineering, 1 credit.
106. Thermodynamics, 1 credit.
107. Pneumatics, 1 credit.
108. Hydraulic Machinery, 1 credit.
109. Mechanical Technology, 1 credit.
110. Translation of Technical Engineering work, 1, 2, or 3 credits.

SECONDARY

111. Any primary offered in the College of Engineering, 1 credit. Primary subjects which may be taken as secondary in any course for the Master’s Degree in the College of Engineering.

MECHANICS, THEORETICAL AND APPLIED.

1. ANALYTICAL MECHANICS.—The mechanics of engineering, rather than that of astronomy and physics, is here considered, with a view to the future needs of the student of engineering. In addition to fixing the fundamental concepts and demonstrating the general principles of equilibrium and motion, application of principles and methods is made to numerous and varied engineering problems in such a way that the student must discriminate in the use of data and in the statement of conditions, and so obtain a working knowledge of the subject. The methods of the calculus are used whenever preferable. As mathematical processes and forms express most readily and quickly the rules and methods of work, the training in this direction is important. This subject requires a thorough working knowledge of the mathematics preceding it in the course.

Outline of the subject: Nature and measure of force; composition and resolution of forces; moments; conditions of equilibrium; resultant of systems of forces; centre of gravity; moment of inertia; rectilinear and curvilinear motion, and the relation between such motion and the constraining and accelerating forces; dynamics of a rigid body; momentum and impact; work, energy, and power; mechanical advantage; friction. Bowser’s Analytical Mechanics. Fall term, full study. Professor Talbot.

Required. Math. 2, 4, 6, 7, 8, 9.

2. RESISTANCE OF MATERIALS.—In the treatment of this subject it is the aim to give the student a thorough training in the elementary principles of the mechanics of materials, to follow with such experiments and investigations in the testing
laboratory as tend to verify the experimental laws, and to add such problems in ordinary engineering practice as will train the student in the use of his knowledge. Attention is also given to the quality and requirements for structural materials.

Outline of the subject: Elasticity of materials; stresses and strains; experimental laws; working strength for different materials; resistance of pipes and riveted joints; bending and resisting moment; shear and elastic curve of cantilever, simple, restrained, and continuous beams; column formulas; torsion, and shafts; maximum internal stresses in beams; fatigue of metals; working strength for repeated stresses; resilience; reliability of the common theory of flexure, as shown by actual experiment; design and strength of rolled and built beams and columns; specifications for materials and methods of testing. Merriman's Mechanics of Materials. Winter term, full study. Professor Talbot.

Required: Math. 2, 4, 6, 7, 8, 9; Theoretical and Applied Mechanics 1.

3. HYDRAULICS.—In hydraulics the instruction is by textbook and laboratory work. The laws of the pressure and flow of water and its utilization as motive power are considered. Experimental work in the hydraulic laboratory gives training in the observation and measurement of pressure, velocity, and flow, and in the determination of experimental coefficients.

The subject covers the following: Weight and pressure of water; head; centre of pressure; velocity and discharge through orifices, weirs, tubes, nozzles, pipes, conduits, canals, and rivers; measurement of pressure, velocity, and discharge; meters and measurements; motors, turbines, and water wheels; water power and transmission of power. Merriman's Hydraulics. Spring term, full study. Professor Talbot.

Required: Math. 2, 4, 6, 7, 8, 9; Theoretical and Applied Mechanics 1, 2.

4. APPLIED MECHANICS.—To be taken instead of Analytical Mechanics. The course of study and topics studied will be nearly identical. Peck's Elementary Mechanics. Fall term, full study. Mr. McLane.

Required: Mathematics 2, 4, 6.

5. STRENGTH OF MATERIALS.—To be taken instead of Resistance of Materials. The course of study will be nearly the same, though somewhat simplified, Merriman's

Required: Mathematics, 2, 4, 6; Theoretical and Applied Mechanics 4.

COURSES FOR GRADUATES

Theoretical and Applied Mechanics

103. Hydraulics and Hydraulic Engineering.
104. Laboratory of Applied Mechanics.

Meteorology

1. Meteorology.—The study of those atmospheric movements which bring changes of weather and the relations of these movements to heat, cold, electrical conditions, wind, cloud, barometric pressure, etc., constitutes the work of the first half of the fall term. Abercrombie’s Weather is used as an introductory text-book; but most of the instruction is given by lectures, the study of charts. Attempts are made by the student to forecast weather changes. Fall term, two-fifths study. Professor Rolfe.

Required: Chemistry 3b; Physics 1 or 2.

Military Science

1. Drill Regulations.—For all male students. First term: school of soldier; bayonet exercise; second term: school of company, close and extended order. Fall and winter terms, one-fourth study. Professor Brush.

2. Practical Instruction in School of Soldier.—Company and battalion in close and extended order; school of the cannoneer and of the battery dismounted; target practice. Freshmen and sophomore years; six terms, counts one and one-half studies. Professor Brush.

3. Recitations and Practice for Officers and Non-Commissioned Officers.—Sophomore year: School of the battalion, close and extended order; ceremonies; review and
inspections; military signaling; guard, outpost, and picket duty

Junior year: military administration; reports and returns; theory of firearms and target practice; organization of armies; field fortifications; art of war. Seven terms, recitations 1 to 2 hours a week; drill 2 hours a week. Professor Brush. This course is obligatory upon officers and non-commissioned officers, and open to others.

MINERALOGY

1. Elements of Mineralogy.—The first term's work is intended to be a general introduction to the subject. Instruction includes lectures and laboratory practice. In the lectures, which occur on specified days (2 or 3) each week, such subjects as follow are discussed: genesis of minerals; conditions favoring their deposition; origin of the massive and crystalline forms; relationships of minerals and their classification; the physical properties of minerals; as color, luster, hardness, gravity, streak, etc., with the conditions which may cause these properties to vary; elements of crystallography, etc.

In the laboratory the student is first made acquainted with the simplest trustworthy methods for proving the presence or absence of the acids and bases. He is then required to determine a large number of species by their physical and chemical properties only. Fall term, full study. Professor Rolfe and Mr. Mosier.

Required: Chemistry 1.

2. Advanced Mineralogy.—Crystallographic Mineralogy. During the second term a careful study of the forms of crystals is made, including the measurement of angles and determination of complex forms. The student is also required to identify many species of minerals by their crystalline forms, and to verify his conclusions by the methods in use during the preceding term.

Optical Mineralogy. The work of the third term will be devoted to the microscopic determination of rock forming minerals; to methods for separating the mineral constituents of fine grained rocks, etc. Winter and spring terms, full study. Professor Rolfe and Mr. Mosier.

Required: Mineralogy 1.
MUNICIPAL AND SANITARY ENGINEERING

1. Road Engineering.—Instruction is given by means of text-books and lectures. The value and importance of road improvement in country highways and the best means of securing it are considered, together with the principles and details of construction of earth, gravel, and macadam roads. In city streets, the methods of construction, cost, durability, and desirability of the various kinds of pavement, and the question of grades, cross-sections, methods of assessment of cost, and methods of maintenance and cleaning are treated. Lectures and reading. Winter term, with Civil Engineering 4, makes a full study. Assistant Professor Pence.

Required: Math. 4; General Engineering Drawing 1, 2; Civil Engineering 1, 2, 3, 4.

2. Water Supply Engineering.—This subject is intended to cover the principal features of the construction of water works, including the tests and standards of purity of potable water; the choice of source of supply; the designing of the distribution system, pumps and pumping machinery, reservoirs, stand-pipes, and the filtration of water. Lectures; Fanning's Water Supply Engineering. Fall term, full study. Professor Talbot.

Required: Theoretical and Applied Mechanics 1, 3; Chemistry 1; Mechanical Engineering 6.

3. Sewerage.—The design and methods of construction of sewerage systems for cities, including the following: Sanitary necessity of sewerage; water carriage systems, both separate and combined; surveys and general plans; hydraulics of sewers; relation of rainfall to storm water flow, and determination of size and capacity of sewers; house sewage and its removal; form, size, design, and construction of sewers and sewer appurtenances; modern methods of sewage disposal by filtration, chemical precipitation, irrigation, etc., with resultant changes in the sewage; garbage disposal; general sanitation; estimates and specifications. Lectures; Staley and Pierson's Separate System of Sewerage. Winter term, full study. Professor Talbot.

Required: Theoretical and Applied Mechanics 1, 3; Chemistry 1.

4. Botany.—This is a study of the lowest orders of plants, including such species as are most commonly met with in
microscopical examinations of water, and found associated with putrescent substances. Lectures or recitations and microscopical laboratory work. This is practically the same as the first part of the second term of Botany 1, in the College of Science. Winter term, half study. Professor Burrell.

5. Bacteriology.—For students in course in municipal engineering. This course includes the identification and classification of bacteria, and of allied organisms, their relations to health and to disease, the methods of separation and cultivation, and the methods of air and water analysis. The laboratory is furnished with sterilizers, culture ovens, microscopes, etc., and students have abundant opportunity to do practical work. This is at first the same as Bacteriology 1, in the College of Science, but in the latter part of the term special investigations are undertaken by the engineering students. Fall term, full study. Professor Burrell.

Required: Municipal and Sanitary Engineering 4.

MUSIC

Only Course 1 may be taken for credit for the regular degree by students in the College of Literature and Arts, and then only if they are at the same time enrolled in the department of music.

1. History of Music.—Lectures on the development of music from its beginning among the Greeks to the present day, including the rise of dramatic music, the origin and progress of the oratorio, the evolution and development of instrumental forms, and studies in the lives of the composers. Assigned collateral readings. Fall, winter, and spring terms, three-fifths study. Assistant Professor Jones.

2. Theory of Music.—First: A course in harmony, two hours a week, in class, through four terms. Emery’s Harmony with additional exercises. Weitzman’s Theory of Music.

Second: A course in counterpoint, two hours a week in class through two terms. Richter’s Counterpoint.

Third: A course in fugue, two hours a week in class through two terms. Richter’s Fugue.

Fourth: A course in musical analysis which may be taken at the same time with the studies in counterpoint and
fugue. The second, third, and fourth parts of this course are open only to advanced students showing special aptitude. Assistant Professor Jones.

3. (a) Course for the Piano.—Preparatory. This course is equivalent to three years' work. It includes formation and position of fingers, hands, wrists, and arms, properties of touch, principles of technique, thorough drill in scale and arpeggio playing; and exercises in accent, rhythm, and expression. Music used: Herz, Scales and Exercises; Loeschhorn, Op. 65, 66; Lemoine, Op. 37; Heller, Op. 45; Bertini, Op. 29, 32; Czerny, Op. 299, Bks. 1, 2; Bach's Little Preludes; also sonatinas and easier sonatas and compositions by Clementi, Kuhlau, Haydn, Mozart, Mendelssohn, Merkel, Dussek, Diabelli, Grieg, Bargiel, and others.

(b) Collegiate.—First Year.—Studies in development of technique: Czerny, Op. 299, Bks. 3, 4; Czerny, Octave Studies; Cramer, Etudes; Jensen, Etudes; Bach, Two-Voice Inventions and French Suites; Sonatas of Haydn and Mozart; easier Sonatas of Beethoven; Songs Without Words, Mendelssohn; Compositions (smaller works) of Beethoven, Chopin, Schubert, Raff, Grieg, Chaminade, Moszkowski, and others.

Second Year.—Daily technique; Czerny, Op. 740; Bach, Three-Voice Inventions and English Suites; Sonatas and other Compositions of Scarlatti, Beethoven, Schubert, Schumann, Mendelssohn, Weber, Raff, Rubinstein, St. Saens, Godard, MacDowell, and others.

Third Year.—Selections: Clementi, Gradus ad Parnassum; Moscheles, Op. 70; Kullak, Seven-Octave Studies, Bk. 2; Bach, Well-Tempered Clavichord; Sonatas and Concertos by Mendelssohn, Weber, Beethoven, Hummel, Brahms, etc.; selections from works of Bach, Chopin, Schubert, Schumann, Brassin, Rubinstein, Liszt, Moszkowski, Scharwenka, and other modern composers.

Fourth Year.—Selections: Octave Studies; Clementi, Gradus, Continued; Bach, Well-Tempered Clavichord, Continued; Chopin, Etudes; Henselt, Etudes; Rubinstein, Etudes; Sonatas by Beethoven, and Concertos and other Compositions by the great masters, classic and romantic, both of the older and the more modern schools. Assistant Professor Jones.

4. Course for the Organ.—A similar preparatory and collegiate course for the organ will be offered for any one caring
to make this the principal instrument. Assistant Professor Jones.

5. Course for the Voice.—A preparatory and collegiate course in vocal culture is also offered, similar in outline to the above courses. Miss Rowley.

PALEONTOLOGY

Advanced Paleontology.—The work outlined under Geology 1d. can do little more than introduce the general subject. To those who desire a better acquaintance with paleontology a course of two terms is offered.

This course will include: (a) Discussion of the biological relations of fossil forms along the lines indicated in Williams's Geological Biology; (b) a discussion of the principles of classification as applied to fossils, together with the characteristics which distinguish the larger groups, using Nicholson and Zittel as guides; (c) a study of the distribution and variations of the genera and species of one or more of the more important groups as illustrated by the collections of the University, using the various state reports and Miller's Handbook as aids.

Winter and spring terms, full study. Professor Rolfe and Mr. Mosier. A major in Botany and Zoology would aid the student greatly in this work, but neither is absolutely required.

Required: Geology 1.

PEDAGOGY

1. The Psychology of the Teaching Process.—(a) The nature and organic elements of the process deduced and exemplified in various subjects. (b) The principles of school organization and management derived from the foregoing, with a special study of the recitation in which the teaching process realizes itself. (c) The field of pedagogical inquiry mapped as a basis and guide to further study. Fall term, full study. Professor Tompkins.

2. The Aim or Motive in Teaching.—(a) The true, or universal aim, as determined by the nature of life. (b) The various aims as consciously or unconsciously held at present by different countries and classes of people. Such diversity accounted for and unified. (c) The aim as shown in variation
through historical development—the history of educational ideals. *Winter term, full study.* Professor Tompkins.

Required: Pedagogy 1.

3. **The Universal Form of Method in Education,** as determined by the nature of life. (a) In its subjective aspect. (b) In its objective aspect. (c) The three forms of the relation of “a” and “b,” giving rise to the logic, ethics, and aesthetics of education—the fundamental educational categories. *Spring term, full study.* Professor Tompkins.

Required: Pedagogy 2.

4. **The Universal Law and Problem of Thinking.**—Special movements of the mind in learning discriminated. (1) How to think objects into organic unity. (2) How to think objects into class unity. *Fall term, full study.* Professor Tompkins.

Required: Pedagogy 3.

5. **The Logical and the Psychological Factor in Educational Method,** that is, the foregoing process modified by the psychological factor. (a) The sketching of lessons in recognition of the two factors. (b) The course of study as determined by the two factors—the logical and chronological arrangement of studies. *Winter term, full study.* Professor Tompkins.

Required: Pedagogy 4.

6. **Special Methods in the Common School Subjects,** as determined by the logic of the subject and by the learning mind. These exemplify in concrete operation all the foregoing laws. *Full study, spring term.* Professor Tompkins.

Required: Pedagogy 5.

7. **Special Methods in High School Subjects.**—In this, the student may select the subject in which he is especially interested, and the instruction, so far as practicable, will be given by the regular teacher of the subject chosen. Thus each student may spend a term in the pedagogy of his chosen subject. At stated intervals, all will meet the professor of pedagogy to compare notes, and to keep duly emphasized the universal laws of pedagogy. *Fall term, full study.* Professor Tompkins.

Required: Pedagogy 6.

8. **Investigations.**—Students may now select experimental psychology or child study, or continue some line of
work of the preceding term in which they are especially inter-
ested. The class will meet to compare notes as before. Winter term, full study. Professor Tompkins.

9. The School the Instrument of Education.—(a) Connected with and differentiated from the other social insti-
tutions. (b) The inherent law of the school ascertained. (c) School organization as determined by the law. (d) School management and supervision under the law. Spring term, full study. Professor Tompkins.

COURSES FOR GRADUATES

101. The Philosophy of Education.—Its nature, scope, power, and basis. Education in its Ethical, Logical, and Esthetic aspects—the fundamental categories of life and learning.

102. Philosophy and Education.—The relations of sys-
tems of philosophic thought to educational ideals and meth-
ods, including the history of educational theories and methods.

103. School Management.—The philosophy of school organization, management, and supervision, including the course of study as the complex process of education.

PHARMACY

1. General Pharmacy.—This course is intended as an introduction to the theory and practice of pharmacy.

Instruction is given by means of lectures and text-books, with recitations upon the history of pharmacopoeias, weights, and measures, specific gravity, and the general operative methods of pharmacy; problems in calculating formulas in parts by weights and percentage strengths, chemical propor-
tions, etc. Remington’s Practice of Pharmacy. Fall term, full study. Mr. Sandford.

2. Pharmaceutical Preparations.—This is a course of practice in manufacturing samples of the various official and unofficial preparations. The student is not required to pre-
pare a great number of each class, but as it is necessary to have sufficient practice to become expert in the manipulation involved, he must make as many as will accomplish that end.

Accompanying the laboratory work is a study of all the official and the important unofficial preparations, recitations
from text-books, lectures and laboratory work. *U. S. Pharmacopoeia; National Formulary, U. S. and National Dispensatories.* Winter and spring terms, full study. Mr. Sandford.

Required: Chem. 1; Pharmacy 1.

3. **Pharmacognosy.**—This course is intended to acquaint the student thoroughly with the chemicals and drugs found in the pharmacy and used by the medical profession. The work begins with comparative studies of the salts, etc., used in medicine, and of the methods of readily distinguishing between chemicals of like appearance. At the same time their physiological action, dose, sources, and methods of manufacture, are considered in a general way. Following this, the organic materia medica is taken up, and includes a complete study of animal and vegetable drugs, and their pharmacopoeial, English, and common names. By continued practice at the desks, the student becomes familiar with all the roots, leaves, seeds, barks, etc., in use, and by the aid of a lens and pocket-knife should become able to recognize any of the substances employed in the practice of pharmacy. *Sayer’s Organic Materia Medica and Pharmacognosy; U. S. Pharmacopoeia.* First year, fall term, three-fifths study; winter and spring terms, two-fifths study. Mr. Sandford.

Finally, a general review of the two years’ work in pharmacy is given as a partial preparation for the examination required by the State Board of Pharmacy for registration as pharmacists. *U. S. and National Dispensatories; U. S. Pharmacopoeia; Remington’s Practice of Pharmacy.* Fall and winter terms, full study. Mr. Sandford.

5. **Pharmaceutical Assaying.**—One term’s work, mainly devoted to proximate analysis of organic compounds and mixtures of natural occurrence or of other origin. The work is both qualitative and quantitative, and includes determinations of the more important alkaloids, carbohydrates, acids, and other essential constituents of organic substances. *Dragen-
dorfs Plant Analysis; Prescott's Organic Analysis; Allen's Commercial Organic Analysis; Lyon's Pharmaceutical Assaying. Spring term, full study. Mr. Sandford.

Required: Chemistry 4.

6. **Pharmaceutical Botany.**—See Botany 7.

7. **Pharmacology.**—In connection with pharmacognosy, which considers drugs merely from the pharmacist's standpoint, courses in pharmacology are offered.

It is the special purpose of these courses to afford students who are preparing for the study of medicine opportunity to acquire needful knowledge of materia medica.

Medicines are classified according to their therapeutic uses and value. The articles of materia medica which are most frequently employed and are of most value in the practice of the physician, are given most careful study. The more recent drugs, as well as the synthetically prepared chemical products, are commented upon. Careful attention is also given to poisons and their antidotes, to systems of dosage, and to emergency methods. Lectures and recitations. Farquharson's Guide to Therapeutics. Fall and winter terms, full study. Mr. Sandford.

PHILOSOPHY

1. **Outlines of Philosophy.**—This course is offered for the benefit of students who can give only a single term to the study of philosophy. It is designed primarily to meet the wants of science students who desire some knowledge of the subject. The most important problems in philosophy and metaphysics are presented. Lectures and prescribed reading. Fall term, full study. Assistant Professor Daniels.

2. **Ancient and Mediæval Philosophy.**—A rapid survey is taken of the development of speculative thought, beginning with the early Greek philosophers and continuing through the mediæval period. Winter term, three-fifths study. Assistant Professor Daniels.

3. **Modern Philosophy.**—This course considers the formation and development of the problems and conceptions in philosophy from Descartes to the present time. Selections from the philosophical masterpieces of this period are carefully
studied. Special emphasis is laid upon the philosophy of Kant. *Spring term, full study.* Assistant Professor Daniels.

4. **Metaphysics.**—This course consists of a somewhat critical and thorough study of subjects of special prominence in philosophy; *e.g.*, realism, idealism, and the theory of knowledge. No text-book is used. Topics are assigned and papers, prepared by the students, are read and discussed in the class. To promote acquaintance with current philosophical thought various articles on different aspects or problems of modern philosophy are read and criticised. *Winter term, two-fifths study.* Assistant Professor Daniels.

5. **Advanced Philosophy.**—The work consists in a critical study of Lotze's *Microcosmus*, together with supplementary readings and discussions upon suggested topics. The course is designed for somewhat advanced students, and is open to those who have received at least two credits in philosophy. *Fall and winter terms, full study.* Assistant Professor Daniels.

Required: Philosophy 2, 3, 4.

6. **Practical Ethics.**—In this course those questions which bear the closest relation to life and conduct are raised and discussed. The duties of the individual, the family, and the state are among the subjects considered. Special subjects in social ethics may be taken up, including the duties of society to the unfortunate and delinquent classes. *Spring term, two-fifths study.* Assistant Professor Daniels.

7. **History and Criticism of Ethical Theories.**—A careful and historical examination of the various types of ethical theory, including rational, hedonistic, eudemonistic, esthetic, and evolutional ethics. It is designed to make the student as familiar as the time allows with the writings of representative men of the various schools. *Spring term, three-fifths study.* Assistant Professor Daniels.

8. **Logic.**—This course aims to give a knowledge of the principles of deductive and inductive reasoning. Special attention is given to fallacies and to the problems, grounds, and principles of induction. The study is designed not only to direct the student in practical reasoning and correct thinking, but also to familiarize him with the principles and methods of scientific investigation. *Spring term, full study.* Assistant Professor Daniels.
9. Contemporary Philosophical Thought.—The aim of this course is to present the philosophical views of several thinkers of the present time. Special attention is given to the philosophy of Herbert Spencer. Lectures and prescribed reading. Fall term, full study. Assistant Professor Daniels. Required. Philosophy 1, 2, 3.

COURSE FOR GRADUATES

101. The Philosophy of Kant.

Physical Training

For Men

1. Gymnasium and Field Practice required in winter term twice a week, as part of military science. One-fourth credit counted with the latter subject. Assistant Professor Everett.

2. Lectures and Practical Demonstrations.—This course is offered to students who wish to gain a better comprehension of the value of physical exercise, its use and abuse, how to train properly for athletic contests, and thus to avoid the ill-effects which too often follow a course of athletic training. It is hoped that by thus connecting the theoretical and practical work, better results will be obtained in the department.

During the fall term the subject of applied anatomy receives attention—the muscles and their action, with the various methods of developing their power; first aid to the injured; how to prevent and correct physical deformities; specific exercises and their effects on the organs of the body, etc.

In a similar manner, during the winter term, special physiological instruction is given upon such topics as the following: The effects of exercise and training on the action of the heart, lungs, and other vital organs; diseases from overwork, their prevention and cure; personal hygiene, sleep, diet, exercise, bathing, clothing, colds, tobacco, and alcohol. Once a week. Fall and winter terms, one-fifth study. Assistant Professor Everett.

For Women

3. Gymnasium and Field Practice, three times a week and instruction in applied anatomy, physiology, and hygiene
once a week when required. *Fall, winter, and spring terms, one credit each year.* Miss Morrison.

FOR MEN AND WOMEN.

4. HYGIENE.—A course designed to impart a knowledge of the conditions of bodily health and activity. Among the more important subjects treated may be named the theory of bodily exercise, ventilation and heating, the composition and relative nutrient value of foods, and the causes and methods of communication of contagious diseases. The course deals with those practical hygienic problems of everyday life that are wholly or in large part under the control of each individual. *Fall and winter terms, one-fifth study.* Associate Professor Summers.

Required: University examination in entrance physiology or its equivalent.

PHYSICS

1. GENERAL DESCRIPTIVE PHYSICS.—Lectures. This course is designed for those who wish to gain a knowledge of the more important phenomena and laws of physical science, and of the means for exhibiting, studying, and applying such laws. Prescribed for students in the College of Engineering. *Three times a week. Fall, winter, and spring terms, two-fifths study.* Assistant Professor Sager

Required: Math. 3 or 4.

2. ELEMENTARY PHYSICAL MEASUREMENTS.—Lectures and Laboratory. This course is designed for those who wish to become acquainted with the simpler methods used in the qualitative and quantitative study of physical phenomena. Lectures twice a week; laboratory, three periods of 3 hours each week. *Winter term, full study.* Assistant Professor Sager.

3. ADVANCED PHYSICAL MEASUREMENTS.—Laboratory. This course is designed for those who wish to study quantitatively by the aid of the more accurate scientific methods, the chief phenomena and laws of physical science. Prescribed for students in the College of Engineering, and must be taken by them in the same year with Physics 1. *Once a week. Fall, winter, and spring terms, three-fifths study.* Mr. Quick.

Required: Math. 3 or 4.
4. Advanced Electrical Measurements.—Lectures and laboratory. This course is a discussion of the theory of electricity and magnetism, particularly with respect to electrical and magnetic units, and electrical measuring instruments, together with laboratory work in advanced problems in electrical measurements. Prescribed for students in electrical engineering. Fall, winter, and spring terms, one-half study. Assistant Professor Sager and Mr. Moore.

Required: Physics 1 and 3; Math. 7, 8, 9.

5. Mathematical Theory of Electricity and Magnetism.—A general treatment of electro-statics, electro-dynamics, magnetism, and electro-magnetism. Fall, winter, and spring terms, full study. Assistant Professor Sager.

Required: Physics 1 and 3; Math. 7, 8, 9.

6. Mathematical Theory of Dynamics, Heat, Light, and Sound.—A general treatment of the more important problems of dynamics, heat, light, and sound. Fall, winter, and spring terms, full study. Assistant Professor Sager.

Required: Physics 1, 3; Math. 7, 8, 9.

7. Advanced Measurements in Dynamics, Heat, Light, and Sound.—Laboratory. Fall, winter, and spring terms, full study. Assistant Professor Sager and Mr. Quick.

Required: Physics 6.

8. Original Research.—Laboratory. Fall, winter, and spring terms, full study. Assistant Professor Sager.

Required: Physics 6, 7.

9. Thermodynamics and Electro-Chemistry.—This course will take up some work in physical chemistry leading to work on electro-chemistry. The work will be developed from considerations of thermodynamics. Fall, winter, and spring terms, full study. Mr. Moore.

Required: Math. 7, 8, 9; Chemistry 1.

PHYSIOLOGY (Human)

1. Major Course.—Taking as a basis the knowledge of the structure and physiology of mammals obtained in Zoology 1 or 3, there is made a systematic study of the differences, so far as they are of physiological import, between the anatomy of man and of the type mammal there studied; a more detailed study of the facts and methods of mammalian histology;
and finally, with as much fullness as the time will permit, a study of the special physiology of man. In the laboratory work the topics are selected to illustrate, so far as possible, the different methods of obtaining physiological data. *Winter and spring terms, full study.* Associate Professor Summers.

Required: Chemistry 4; Zoology 3.

2. **Advanced Physiology.**—The first term is devoted to a study of the physiology of foods, digestion, and excretion, illustrating the application of chemical principles and methods to physiological research. The second term is given to a study of the blood, the circulation, and respiration. This involves principally the application of physical methods and practice in the use of instruments of precision. The third term is occupied with a study of the general physiology of muscle, and the special anatomy and physiology of the nervous system. *Fall, winter, and spring terms, full study.* Associate Professor Summers.

Required: Physiology 1; Physics 1.

3. **Investigation and Thesis.**—An opportunity for original investigation, upon which may be founded the graduating thesis, is offered to students in their senior year. While the instructor has general supervision of this work, it is expected that the student will at all times take the initiative, seeking only such information and advice as he would ask of any co-worker in his department of science. *Winter and spring terms, full study.* Associate Professor Summers.

Required: Physiology 1, 2.

4. **Minor Course.**—This course is planned for literary students and for students of natural science specializing in other lines. While some attention is paid to all the important processes of the body, special emphasis is laid upon those facts that serve as a basis for practical hygiene. *Fall term, full study.* Associate Professor Summers.

Required: Chemistry 1.

POLITICAL SCIENCE

1. **Political Institutions.**—Comparative study of modern political systems, their historical development and practical operation. Lectures, assigned readings, reports, and
discussions. **Fall, winter, and spring terms, three-fifths study.** Assistant Professor Tooke.

2. **JURISPRUDENCE.**—Elementary course in the origin, development, and classification of law, followed by an introduction to the fundamental principles of the English Common Law. **Fall and winter terms, two-fifths study.** Assistant Professor Tooke.

 Required: A reading knowledge of Latin.

4. **INTERNATIONAL LAW.**—Sources and historical development. Essential powers of states, their rights and their obligations. Laws and usage in time of war. History of American diplomacy. **Fall, winter, and spring terms, two-fifths study.** Assistant Professor Tooke.

 Required: Political Science 1.

5. **COMPARATIVE ADMINISTRATIVE LAW.**—General principles of administrative law of the United States (national and commonwealth), England, France, and Germany. The appointment, tenure, and duties of officers. Historical and comparative study of local government. **Fall, winter, and spring terms, two-fifths study.** Assistant Professor Tooke.

 Required: Political Science 1 and 2. [Not given in 1896-97.]

6. **COMPARATIVE CONSTITUTIONAL LAW.**—A comparison of the constitutions of the leading states of Europe, and of North and South America, special attention being paid to the constitutional law of the United States, England, Germany, and France. **Fall, winter, and spring terms, two-fifths study.** Assistant Professor Tooke.

 Required: Political Science 1, 2.

7. **LAW OF MUNICIPAL CORPORATIONS.**—History and legal status of the American municipality. To supplement course 5. **Fall and winter terms, two-fifths study.** Assistant Professor Tooke. [Not given in 1896-97.]

8. **LAW OF TAXATION.**—Nature of the taxing power. Constitutional limitations. Procedure of tax administration. Remedies open to tax payers. **Spring term, two-fifths study.** Assistant Professor Tooke.
9. **Seminary of Constitutional Law.**—Open to graduates and to seniors taking course 6. The general subject for 1896–97 will be a study of the principles established by the leading decisions of the Supreme Court of the United States. *Fall, winter, and spring terms, two-fifths study.* Assistant Professor Tooke.

PSYCHOLOGY

1. **General Psychology.**—In this course are considered the more general problems of the mental life of the normal individual, especially those that have a living interest for the student, and find illustration in his every day life. Among the topics discussed the following are the principal: Relation of mental activity to bodily changes, sensation, habits, attention, memory, imagination, association of ideas, reasoning, instinct, emotion, will, localization of cerebral functions, time relations of mental phenomena. The course is amply illustrated by the use of apparatus, charts, prepared tissue, and photographs. Endeavor is made to give the class the more important results of recent researches, and the course is made to comprise the results of both the introspection and laboratory methods. *Fall term, full study.* Assistant Professor Krohn.

2. **Laboratory Psychology.**—This course is made up of lectures and laboratory work, with assigned reading. The class performs a series of about one hundred experiments to illustrate the time relations of mental processes, the influence of mind and body upon each other, and the psychic factors in sensation. The current literature in this field is discussed in the class, and made the basis of reports and reviews on the part of the students. *Winter and spring terms, three-fifths study.* Assistant Professor Krohn.

3. **Comparative Psychology.**—This course embraces the study of the lower mental activities as manifested in the life of various animals. The object of the course is to trace the development of mind along the animal scale, ranging from the lower forms to the more complex mental phenomena in the conscious life of man. *Romanes and Lloyd-Morgan.* *Spring term, two-fifths study.* Assistant Professor Krohn. *Required* Psychology 1, 2, or 9.
4. **Educational Psychology.**—In this course are discussed the growth and development of the mind, especially with reference to the first years of childhood. The attempt is made to devise methods by means of which the contents of a child’s mind may be determined at any period of its development. Thus the various methods of testing and training the memory, attention, and other mental powers, will be submitted and employed in actual observations, upon which notes will be made for discussion in class. The order in which the various mental capacities unfold will also form an important theme for study. The course is thoroughly practical in its nature. *Krohn's Practical Lessons in Psychology. Fall term, two-fifths study.* Assistant Professor Krohn.

5. **Psychology of Crime.**—This course consists of a special study of the criminal as a morbid individual in comparison with the normal person. *Spring term, two-fifths study.* Assistant Professor Krohn.

Required: Psychology 1, 2, or 9.

6. **Psychology of Abnormal Types.**—In this course the following, among other subjects, will be studied: The chief forms of mental diseases or types of insanity, the diseases of memory, the diseases of language, the diseases of will, double personality, peculiar dreams, hallucinations, illusions and delusions. The life of the blind, deaf, and imbecile will be inquired into with a view to determine the best methods of education for these classes. *Winter term, three-fifths study.* Assistant Professor Krohn.

Required: Psychology 1, 2, or 9.

7. **Advanced Experimental Psychology.**—Work in this course is arranged for each student individually, and may involve a systematic review of the laboratory methods of some master work in experimental psychology, or it may involve original research. The aim is to give treatment to certain social problems, necessitating original research, and the verification of important features of earlier experiments. *Fall, winter, and spring terms, full study.* Assistant Professor Krohn.

Required: Psychology 2.

8. **Psychological Seminary.**—The subject and hour to be determined after consultation with those who apply. The work in this course is chiefly in the line of discussion of psychological topics and special investigation, as well as reports
on the recent psychological literature. All students pursuing major work in this department are required to take an active part in the seminary during their second year. Once a week; 2 credits. Assistant Professor Krohn.

9. Elementary Psychology.—A course of lectures for the purpose of acquainting the student with the elements of Psychology, with respect to its principal methods and main conclusions. Winter term, full study. Assistant Professor Krohn.

COURSE FOR GRADUATES

101. Special Investigations.—A research course consisting in the investigation of special problems, the nature and scope of these investigations to be determined after consultation.

RHETORIC

1. Rhetoric and Themes.—Required for students in the College of Literature and Arts. Three hours a week; fall, winter, and spring terms. The course counts for two credits. Assistant Professor T. A. Clark and Miss Butterfield.

2. Rhetoric and Themes.—Required for students in the Colleges of Agriculture, Science, and Engineering. Three hours a week; fall, winter, and spring terms. The course counts for two credits. Assistant Professor T. A. Clark and Miss Butterfield.

3. Daily Themes.—Higher English Composition. Two hours a week; fall, winter and spring terms, full study. Assistant Professor T. A. Clark. Required: Rhetoric 1 or 2.

4. Argument.—This course will be devoted to lectures and text-book work on the principles of argumentative discourse. Weekly practice in the writing of arguments will be required. Winter term, full study. Assistant Professor T. A. Clark. Required: Rhetoric 1 or 2.

SOCIOMETRY

[See under Anthropology, Anthropometry, and Economics.]
SPANISH

1. Grammar and Reading.—Edgren's Spanish Grammar; Knapp's Spanish Readings; Cervante's Don Quijote; outlines of Spanish literature. Fall, winter, and spring terms, full study. Assistant Professor Fairfield. [Not given in 1896-97.]

THEORETICAL AND APPLIED MECHANICS

[See Mechanics, p. 188.]

VETERINARY SCIENCE

1. Anatomy and Physiology.—The anatomy and physiology of the domestic animals constitute the subjects of instruction for one term. The instruction is given by lectures aided by demonstrations with use of skeletons, and of other apparatus as follows: Dr. Auzoux's complete model of the horse, which is in ninety-seven pieces and exhibits three thousand details of structure; papier-maché model of the horse's foot; the teeth of the horse at different ages; and dissections of animals. This work is supplemented with the study of text-books: Strangeways' Veterinary Anatomy and Mills's Animal Physiology. Fall term, full study. Professor McIntosh.

2. Principles and Practice of Veterinary Medicine.—This subject is taught by lectures and text-books on the diseases of domestic animals, and is illustrated with specimens of morbid anatomy and by observations and practice at the clinics. The latter are held at the veterinary infirmary once a week. The students assist in the operations, and thus obtain a practical knowledge of the subject. Dissections and post-mortems are made as cases present themselves. Text-books: Diseases of Horses and Cattle, by D. McIntosh, and Williams's Practice of Veterinary Medicine and Surgery. Winter and spring terms, full study. Professor McIntosh.

3. Veterinary Materia Medica.—This subject, which treats of all the agents used for the cure of disease or injury, or for the preservation of health among the domestic animals, is taught by lectures and text-books, illustrated by specimens of all the drugs used in veterinary practice. The compounding of medicines also receives attention. Fall, winter, and spring terms, full study. Professor McIntosh.
ZOÖLOGY

1. General Zoölogy, Major Course.—The work here described forms a continuous course, beginning in the winter term of the freshman year and ending with the fall term of the sophomore year. It is the immediate object of this course to lay the foundation for a working knowledge of zoölogy, and its secondary object to draw from zoölogical science its distinctive discipline as an element in a liberal education. It is planned with a view to giving students a wide acquaintance with the methods of zoölogical research in field, laboratory, and library, and a general acquaintance with zoölogical theory and the leading facts of acquaintance with zoölogical practice upon which such theory rests. It is devoted especially to a series of laboratory studies of animal types, and to lectures on the morphology, physiology, and relations to nature of this selected series. It is divided into three sub-divisions consisting of one term each. The first term's work may be taken separately as a minor by students not in the natural science group.

a. The laboratory work of the first term includes dissections of the earthworm, serial sections of this form and of Hydra, and numerous studies and preparations of the Protozoa. Lectures on the structure, physiology, and classification of the Protozoa, their relations to plants and to the organization, embryological development, and history of the higher animals, are made to elucidate and illustrate the general theory of zoölogy, which is here presented in outline to be filled in and completed as the work proceeds. The general zoölogy of the remaining lower invertebrate forms, including Vermes, finishes the work of the term.

b. The second term is devoted to the morphology, physiology, and general classification of the remaining invertebrates, with principal attention to the Arthropoda. It is directed especially towards the entomological course of this department, and is required of all students expecting to take entomology. The laboratory work includes a special study of the crayfish, and of the embryology of the potato beetle, followed by a considerable amount of semi-independent work upon the invertebrate fresh water fauna of the region.

c. The third term's work is done on vertebrates, with principal attention in the laboratory to anatomical work on the
larger animals. The general method is that of comparative anatomy, with special reference to the anatomy of man, this part of the course being directed particularly towards the physiological courses of the University which follow upon it. Philosophical zoology takes the form in this term of a course of lectures on the general theory of organic development, illustrated by a systematic study by lectures and reading of the modern doctrine of the descent of man. **Winter, spring, and fall terms, full study.** Mr. **FRANK SMITH (a and b)** and Associate Professor **SUMMERS (c).**

Required: Chemistry 1. Art and Design 1 must be taken with this course if it has not been taken previously.

2. This course consists of the first and second terms’ work of Zoology 1. It is intended especially to serve as a thorough zoological preparation for General Entomology (Zoology 6). **Winter and spring terms, full study.**

Required: Chemistry 1 and Art and Design (see course 1).

3. This course consists of the first and third terms’ work of course 1. It is intended to serve as a thorough zoological preparation for Physiology 1, and is especially commended to students contemplating the study of medicine. **Winter and fall terms, full study.**

Required: Chemistry 1 and Art and Design (see Course 1).

4. **EMBRYOLOGY.**—Lectures, laboratory and reference work. This course begins with a study of the germ cells, and the processes of maturation, fertilization, cleavage, and gastrulation from preparations furnished to the student. The study of the development of the vertebrate form in the chick is then taken up, with preparations of the amphibian embryo for comparison. Instruction is given in methods of preparing embryological material, and of making graphic and plastic reconstructions from serial sections. Hertwig-Marks' *Embryology of Man and Mammals* and Marshall's *Vertebrate Embryology. Winter term, full study.* Dr. **KOFOID.**

Required: Zoology 1 or 3.

5. **ADVANCED ZOOLOGY.**—To students who have had course 1, 2, or 3, an opportunity is offered for a year’s work in advanced zoology. It may be closely adapted to the bent and ability of the student. Four main lines of work will, however, be especially provided for: (a) Systematic reading of general zoology (at present Hertwig’s *Lehrbuch der Zoologie*),
together with lectures on the history of zoölogy and on the morphology, physiology, and oecology of special groups. (b) Seminary work, consisting of the collation, indexing, and abstracting of a scattered literature on assigned or selected subjects, and the preparation of papers based on these bibliographical and literary studies. These papers will be closely criticised and discussed as a means of education in the preparation of scientific manuscript for the press. Regular instruction in natural history drawing sufficient to enable the student to prepare illustrations for reproduction by the ordinary methods will be made a part of this course. (c) Zoölogical research work, which will usually take the form of an original investigation of a limited subject, carried forward with whatever aid, guidance, and instruction, the nature of the subject and the ability of the student may require. It is the purpose of this course to make the student acquainted with the general method of science and to prepare him for the thesis investigation of the senior year. Students so desiring may pursue a research course at the University Biological Station on the Illinois River during the summer vacation months, and will receive credit therefor. (d) Pedagogical zoölogy, offered with special reference to those who wish to become teachers of biological subjects. This course will be conducted in cooperation with the department of pedagogy.

Any one of these four lines of work may be taken separately, proportional credit to be given therefor. Seminary and research courses will, however, be required of all students purposing to graduate with a zoölogical thesis. Fall winter, and spring terms, full study. Professor Forbes.

Required: Zoölogy 1, 2, or 3.

6. General Entomology.—This course of two terms should be taken by preference in the sophomore year. It is practically a sequel to course 2 in general zoölogy, the work of the second term of that course being directed especially towards entomology.

Presuming upon a general knowledge of the Arthropoda, the instruction begins with more detailed work on Insecta. The greater part of the course consists of laboratory studies of the structure and classification of insects; practice in the determination of species and the description and illustration of species and structures; field work and observation, including
the collection of specimens of all orders and stages, aquatic and terrestrial; office work in the preparation, labeling, and arrangement of collections; a systematic independent study of life histories of selected species, with full records, descriptions, and drawings; experimental insecticide work, and library practice in the collection, collation, indexing, and abstracting of the literature of the species principally studied, concluding with a thesis on a single species studied both biologically and experimentally. Special instruction is given in this course in the art of entomological illustration, under the supervision of an expert zoological artist.

It is intended that the student shall come through this course accomplished in all the methods of the zoological laboratory as applied to entomology, competent to determine, to draw, and to describe species, and experienced in the various operations of field, laboratory, library, and economic entomology. Winter and spring terms, full study. Professor Forbes and Mr. Johnson.

Required: Zoology 1, 2, or 5.

7. Advanced Entomology.—Special courses will be arranged in either technical or practical entomology for students wishing to specialize extensively in this direction, and to such students the facilities of the State Laboratory of Natural History and of the State Entomologist's office will be freely open. Special provision will be made for the instruction and supervision of students desiring to fit themselves for the investigation of the contagious diseases of insects. Fall, winter, and spring terms, full study. Professor Forbes.

Required: Zoology 5.

8. Practical Entomology.—This is a single term's work open, without conditions precedent, to University students, but offered for the special benefit of students in agriculture. By means of laboratory studies and lectures and field and insectary observations, students will be made familiar with the commonest and most important injurious insects, and with means of preventing or arresting their injuries. Spring term, full study. Mr. Johnson.

9. Thesis Investigation.—Candidates for graduation in the College of Science who select a zoological subject as a thesis are required to spend at least three hours a day during their senior year in making an investigation of some selected
zoological subject. While this work is done under the general supervision of an instructor, it is in its methods and responsibilities essentially original work. Fall, winter, and spring terms, full study. Professor Forbes.

Required: 2 years' major work in Zoological Courses, including Zoology 5b and 5c.

10. **Elementary Zoology.**—This is a laboratory and lecture course on the morphology, physiology, and ecology of types selected from the animal kingdom. The work is so directed as to lead to an acquaintance with the simpler generalizations of biology, in preparation for the more extensive and thoroughgoing theoretical work of general biology 1. It is offered as a minor to students in the College of Science not specializing in zoology, and as an unconditioned elective to members of other colleges. Fall term, full study. Mr. Frank Smith.

11. **Elementary Entomology.**—This is a laboratory and lecture course in general entomology, open to all University students, pursued without especial reference to economic ends, complete in itself, but leading to the major course in entomology (zoology 6). It is especially commended to prospective teachers of natural science and to general students who wish a brief but thoroughgoing experience in some department of natural history. Fall term, full study. Mr. Johnson.

COURSES FOR GRADUATES

101. **Systematic and Faunistic Zoology.**—This course consists of studies of invertebrate animals (including insects), and of aquatic vertebrates, so directed as to give as nearly as possible an exhaustive knowledge of a taxonomic group or of a selected geographic assemblage. If a suitable taxonomic group is chosen, its space and number relations within a definite area will be thoroughly worked out by the precise methods of modern faunistic zoology, including quantitative collections made by uniform methods at regular periods, and the comparative measurement or enumeration of such collections. A study by this means of local and periodic variations in number and distribution will lay the foundations for work in the following course. If a geographic assemblage be selected, critical determinative work will be followed by both qualitative
and quantitative studies of the various groups associated, with a view to accumulating data for an examination of the interactions of the assemblage.

102. Ecological Zoology.—Parallel with or following upon the foregoing course, studies may be pursued to exhibit with precision the interactions between the individual animal, the group, or the assemblage on the one hand, and its environment on the other. Under this head come the relations to nature sustained by birds, insects, and aquatic animals; the phenomena of contagious disease and other forms of parasitism; and the entire system of interactions exhibited by the associated living occupants of a circumscribed area. So far as the studies involve merely the generalizations of data of observation and the combination of such generalization in an ecological theory to be tested by further observation of normal phenomena, they may be regarded as belonging strictly in the present course as here defined. This course and the following are, however, so closely related that they will rarely be kept completely separate.

103. Experimental Zoology.—Under this head are included all experimental studies on animals, whether requiring a special apparatus or not, which are intended to solve specific problems. It will be directed mainly to problems of variation, of distribution and location, and of ecological relationship, which admit of precise solution by exact experimental methods fully under the control of the operator. The experimental equipment of the State Laboratory of Natural History and of the University Biological Station will be at the service of graduate students in this course.

104. Advanced Economic Entomology.—This is a research course in systematic and experimental entomology which involves the application to insects injurious to agriculture and horticulture of the methods and general ideas of the three preceding courses. It is intended to prepare students in a thoroughgoing manner for first-class investigation work in this field, and for the direction of entomological operations in agricultural experiment stations.

105. Pedagogical Zoology.—To university graduates who have taken one or more years of major work in zoology, an opportunity will be given for a year's additional study of that subject, pursued with strict reference to its
teaching in high schools or colleges. Those pursuing this course will be preferred, other things being equal, as student assistants in the zoological laboratories.

DEGREES

BACHELORS' DEGREES

The usual bachelors' degrees are conferred upon those who satisfactorily complete the courses of study described under the different colleges. A candidate for a bachelor's degree must pass in the subjects marked prescribed in his chosen course, and must conform to the directions given in connection with that course in regard to electives. In the Colleges of Literature and Arts, of Science, and of Agriculture, 40 term-credits are required for graduation, except in the chemical group in the College of Science, where 41 credits are required. In the College of Engineering the candidate must complete the course of study as laid down. The number of credits required includes two for military science for men, and for women may include the same number for physical culture. Men excused from the military requirements, and women who do not take courses in physical culture, must elect in lieu thereof two extra terms' work in other subjects.

In all cases in which a thesis is required,* the subject must be announced not later than the first Monday in November, and the completed thesis must be submitted to the dean of the proper college by June 1st. The work must be done under the direction of the professor in whose department the subject naturally belongs, and must be in the line of the course of study for which a degree is expected. The thesis must be presented upon regulation paper, and will be deposited in the library of the University.

1. The degree of Bachelor of Arts is given to those who complete a course in the College of Literature and Arts.

2. The degree of Bachelor of Science is given to those who complete a course in the College of Engineering, of Science, or of Agriculture. The name of the course will be inserted in the diploma after the degree.

*See pp. 220, note, and requirements for graduation in the different colleges.
ADVANCED DEGREES

No degrees are given for study *in absentia*, except that graduates of this University, who become members of the graduate school and reside elsewhere, may receive a second degree, upon the completion of their courses of study within not less than three years of the date of registration. For a graduate of this University who has won recognized distinction in a special line of investigation, and who otherwise fulfills the conditions for a doctor's degree, the requirements of residence for that degree will be such as may be imposed by the general faculty of the University, on presentation of the case by the council of administration. Advanced degrees are conferred by the trustees of the University only upon recommendation of the general faculty, based upon information furnished by the council of administration.

SECOND DEGREES

The second degrees conferred by this University are as follows:

Master of Arts, after Bachelor of Arts in courses of the College of Literature and Arts.

Master of Science, after Bachelor of Science in courses of the Colleges of Agriculture and Science.

Master of Architecture, after Bachelor of Science in courses in Architecture and Architectural Engineering.

Civil Engineer, after Bachelor of Science in the course in Civil Engineering.

Electrical Engineer, after Bachelor of Science in the course in Electrical Engineering.

Mechanical Engineer, after Bachelor of Science in the course in Mechanical Engineering.

Graduates of other colleges and universities having equivalent requirements for baccalaureate degrees may be given second degrees determined in kind by comparison with the usage described above.

All candidates for second degrees are required to register in the graduate school; to conform to the conditions outlined under "Admission," "Registration," and "Studies and Examinations" [pp. 123–126]; to pursue an approved course of study for one academic year in residence, or in the case of
graduates of this University, for three years in absentia; and to pass satisfactory examinations upon all the studies of the approved course.

Each candidate for a second degree must present an acceptable thesis in the line of his major subject of study. The subject of this thesis must be announced to the dean of the general faculty not later than the first Monday in November of the academic year in which the course is to be completed. The completed thesis, upon regulation paper, must be presented, with the certified approval of the professor in charge, to the council of administration not later than June 1st.

The period of required study begins from the date of registration in the graduate school.

Doctor's Degree

The degree of Doctor of Philosophy may be conferred upon any member of the graduate school of not less than three years' standing who shall have reached high attainments in scholarship, including a sufficient knowledge of the Latin, French, and German languages to serve the purposes of research in his principal specialty, who shall have shown marked ability in some line of literary or scientific investigation, and shall have presented a thesis giving clear indications of such scholarship and of such power of research. At least the first two, or the last one, of the three years of study must be in residence at the University, and the entire course of study must be in accordance with the regulations of the graduate school.

The time and study required for a master's degree may be included in the three years required, but approval of a course of study for a doctor's degree must be upon the condition that the candidate is prepared through his baccalaureate work, or otherwise, to enter at once upon advanced studies in the line of his major subject, and that work on this major subject be continued through the three years.

The final examination of a candidate for the doctor's degree is conducted by a committee consisting of the head of the department under which the major subject has been pursued, as chairman, and of not less than two additional members of the general faculty of the University, appointed for the
purpose by the council of administration. This examination covers the subjects of the course approved for the degree, but is specially searching upon that on which the major work has been done. This examination occurs in the week preceding that upon which commencement day occurs.

Each candidate for a doctor's degree must announce to the dean of the general faculty a thesis subject not later than the first Monday in November of the academic year at the close of which the award of the degree is expected. A fair copy of the thesis must be submitted, with a certified approval of the committee on examinations, to the council of administration not later than the first day of June. If the thesis is approved by the Council the candidate must have it printed and must deposit not less than one hundred copies with the librarian of the University.

FELLOWSHIPS

The trustees of the University have established six fellowships, each with a stipend of four hundred dollars, payable in ten monthly instalments.

The rules governing appointments to these fellowships are as follows:

1. The purpose of these fellowships shall be to promote advanced scholarship and original research in the University.

2. The fellowships shall be open to graduates of this and similar institutions. Those who are to complete an undergraduate course previous to the academic year for which appointments are made shall be eligible, with others, as candidates.

3. Nominations to fellowships, accompanied by assignments to special departments of the University for instructional work, shall be made by the council of administration to the trustees of the University, upon applications received by the President of the University each year, not later than the twenty-fifth day of April. These nominations shall be made at a meeting of the council called for that purpose within the month of May. The appointments by the trustees shall be made at their regular meeting in June, and shall take effect the first day of the following September. Vacancies may be filled by similar nominations and appointments at other times.

4. Nominations to fellowships shall be made upon the grounds of worthiness of character, scholastic attainments, and
promise of success in the principal line of study or research to which the candidate proposes to devote himself. Consideration shall also be given to the probable value or usefulness of the services of the candidate as an assistant in instruction, but this shall not be deemed the primary object of the appointment. Other things being equal, preference shall be given to those graduates of this University who have pursued a specialized course.*

5. Candidates must present, with their applications, full information concerning themselves and their qualifications for advanced study and research work, including any written or printed essays or results of investigation, and must name the subject in which they wish to do their major work.

6. Fellowships shall be good for one year. Appointments may not be usually renewed to the same persons, and in no case for more than one additional year; but an appointment as honorary fellow, without stipend, may be made as specified for paid fellowships in the case of any one who has held a regular fellowship and has shown distinguished merit in his work.

7. Fellows shall be constituted members of the graduate school, shall have all of the privileges and bear all of the responsibilities of such membership. Each regular fellow may be called upon to render service in instruction throughout the year in the department in which his major subject lies, equal to one hour daily of class instruction or to two hours daily of laboratory supervision. Such service may receive such credit as the council of administration may determine in each case. Blank forms for applications may be obtained by addressing the registrar.

SCHOLARSHIPS†

STATE

A law passed by the General Assembly of the State of Illinois at the session of 1895 provides that there shall be

* See pp. 58, 99. All members of the Colleges of Engineering and Agriculture and of the chemical and mathematical groups in the College of Science shall be considered as pursuing specialized courses.

† These scholarships replace the honorary scholarships and the accredited school scholarships heretofore given.
awarded annually to each county of the state one state scholar-
ship, which shall entitle the holder thereof, who shall be a
resident of the senatorial district to which he is accredited, to
instruction in any or all departments of the University of Illi-
nois for a term of four years, free from any charge for tuition
or any incidental charge, unless such incidental charges shall
have been made for materials used or for damages needlessly
done to property of the University: Provided, that in
counties having two or more senatorial districts there shall be
awarded annually one additional scholarship for each of said
senatorial districts.

A competitive examination under the direction of the
Superintendent of Public Instruction shall be held at the county
courthouse in each county of the state upon the first Saturday
of June in each and every year by the county superintendent
of schools upon such branches of study as said Superintendent
of Public Instruction and the President of said University
may deem best.

Questions for such examinations shall be prepared and fur-
nished by the President of the University to the Superintend-
ent of Public Instruction, who shall attend to the printing and
distribution thereof to the several county superintendents of
schools prior to such examinations.

The law also provides that in case the scholarship in any
county is not claimed by a resident of that county the Superin-
tendent of Public Instruction may fill the same by appointing
some candidate first entitled to a vacancy in some other county.

Candidates to be eligible to a state scholarship must be at
least sixteen years of age, and must have been residents of
their respective counties for the year preceding the exami-
nation.

A student holding a state scholarship who shall make it
appear to the satisfaction of the President of the University
that he requires leave of absence for the purpose of earning
funds to defray his expenses while in attendance may, in the
discretion of the President, be granted such a leave of absence,
and may be allowed a period not exceeding six years from the
commencement thereof for the completion of his course at
said University.

The law contemplates that the candidate who passes this
competitive examination should afterwards pass the regular
entrance examination to the University. It has been thought
best to combine these examinations so that the successful can-
didate may be admitted to the University without further
examination. To this end the examination will be held on
the first Saturday in June and the Friday preceding (June
5, 6, 1896, and June 4, 5, 1897). The subjects for examina-
tion will be the same as stated under the head of "Admission
by Examination," pp. 35-41.

Any person, whether a candidate for a scholarship or not,
may be examined for admission to the University at these
state scholarship examinations.

MILITARY

Students who have gained six term-credits in class room
military instruction and six such credits in drill practice, are
eligible for appointment as commissioned officers of the
battalion. Those attaining this rank may have awarded them
special scholarships, good for one year, and equal in value
to the University term fees for the same length of time.

PRIZES

THE HAZLETON PRIZE MEDAL

Capt. W. C. Hazleton provided a medal, of beautiful and
artistic design, which is to be awarded at a competitive drill to
be held near the close of the year, to the best drilled student.
Each competitor must have been in attendance at the Univer-
sity for at least sixteen weeks of the current college year; must
not have had more than four unexcused absences from drill;
and must present himself for competition in full uniform.

The award is made for excellence in these particulars:
1. Erectness of carriage, military appearance, and neatness.
2. Execution of the school of the soldier, without arms.

The successful competitor will receive a certificate setting
forth the facts, and may wear the medal until the 15th day of
May following, when it will be returned for the next compe-
tition.
THE HENRY H. HARRIS PRIZE IN BANKING

Henry H. Harris, Esq., of Champaign, offers a prize of one hundred dollars for the best essay on the History of State Banking in Illinois. Competition for this prize is open to all students, graduate and undergraduate, of the University of Illinois. All essays entered in competition are due and must be received by the Professor of Economics by noon of the first of May, 1896. The award will be made in accordance with conditions to be announced hereafter.

The right of not awarding the prize is reserved, if no one of the essays handed in is deemed of sufficient merit. Should the prize not be awarded in 1896, it will remain open for another competition.

IN ORATORY

The Trustees of the University appropriate the sum of one hundred dollars for prizes in oratory and debate during the year. One half of the amount is awarded in two prizes, of thirty and twenty dollars, respectively, to the two students adjudged the best debaters in an inter-class debate. This debate was held for the first time at the University on February 24th last.

The other half of the amount appropriated is awarded, also in two prizes of thirty and twenty dollars, respectively, for the two orations adjudged the best according to the following conditions: For the present the competition is open to members of the two upper classes. Competitors must deposit copies of their orations in the office of the President of the University on or before the first Monday in May. The writers of the six best orations shall deliver them in public on Tuesday evening of Commencement Week, and the prizes shall then be awarded.

INTERSCHOLASTIC ORATORICAL CONTEST

A medal of the value of twenty dollars is offered annually by the University to the high schools of the state for the best oration delivered in a competitive contest between their representatives. This contest takes place in the spring at the time of the interscholastic athletic meet.
BENEFICIARY AID

CHICAGO CLUB LOAN FUND

The Chicago Club of the University of Illinois offers two loans of $250.00 each, payable to the beneficiary, $100.00 the first year, $75.00 the second year, $50.00 the third year, and $25.00 the fourth year. The loans are offered to residents of Cook County, Illinois, only, and are to be awarded upon competitive examination to those obtaining the highest average grades. The loans are due six years after matriculation. They bear no interest while the student is in the University, but six per cent. after graduation. The examination questions are prepared at the University and cover the same subjects as those for the honorary scholarships.

The beneficiaries of this fund also have their incidental fees, amounting to $22.50 a year, remitted by the trustees.

CLASS OF 1895 LOAN FUND

This is a fund of $250.00, established by the class of 1895 to be loaned to needy and deserving students. According to the conditions of the gift, one-fifth of the amount is to be loaned annually, and is open only to members of the freshmen class. No person may receive the benefit of the fund more than four years. The loan bears interest at the legal rate from the time the recipient leaves the University, and is due, one-half in five years, and one-half in six years after matriculation. The management of the fund is in charge of the council of administration.

SOCETIES AND CLUBS

LITERARY SOCIETIES

The Literary Societies have from the opening of the University enjoyed its fostering care.

The Adelphic and Philomathean societies for men, and the Alethenai for women, occupy spacious halls, which the members have furnished and decorated with taste and elegance. Meetings are held Friday evenings throughout term time,
are well attended, and are maintained with interest. They furnish excellent drill in writing, speaking, and parliamentary methods.

THE CHRISTIAN ASSOCIATIONS

Both the Young Men's and Young Women's Christian Associations are active and useful organizations, and have a large membership.

Subscriptions have been made by students and graduates, amounting to $23,000.00, towards a new building for these organizations. A canvass has been started outside with the hope of raising the sum to $32,000.00. If this is successful the building will be begun at once. An excellent site has been purchased.

CLUBS AUXILIARY TO COURSES OF STUDY

AGRICULTURAL CLUB

This Club meets semi-monthly. It is devoted to the discussion of topics of theoretical and practical interest to students of agriculture. All students in the College of Agriculture are eligible to membership.

ARCHITECTS' CLUB

This Club meets once in two weeks for the consideration of current topics of architectural interest and subjects connected with the study of architectural history. All students pursuing architectural studies are eligible to membership.

CIVIL-ENGINEERING CLUB

This Club meets the second and fourth Saturday evenings of each month for the reading and discussion of papers relating to civil engineering. All students pursuing the civil engineering course may become members.

THE ENGLISH CLUB

The English Club is composed of members of the faculty, and of students who have done especially good work in English. The work of the club is confined to the study of recent writers.
of fiction and poetry. The membership is limited to thirty. Meetings are held every three weeks.

French Club

Le Cercle Français embraces students who have had at least one year's work in French. The club meets once a week throughout the year. Its proceedings are conducted in French, the object being to supplement the work of the class room by the practical handling and understanding of the language.

Latin Club

This is an organization for the purpose of promoting interest in the language and institutions of the Roman world. It meets once in two weeks.

Mechanical and Electrical Engineering Society

This club meets on the first and third Saturday evenings of each month.

All students pursuing mechanical and electrical engineering studies are eligible as members. Papers relating to subjects of interest to members are presented and discussed at each meeting.

Medical Club

The Students' Medical Club is composed of students, irrespective of courses and departments, who are preparing for medical study, or who are for any reason interested in medical subjects. Its programs consist of lectures by members of the biological faculty and by physicians, and of papers prepared by members of the Club. It meets weekly.

Musical Clubs

The University Glee Club is an organization for men, and is open to all male students who have good voices and can read music. From this organization a club of sixteen members is chosen, which gives concerts from time to time during the year. The entire Club meets once a week for rehearsal, and is under the direction of the head of the music department.

The Young Ladies' Glee Club is an organization for the young ladies of the University, and is in charge of the vocal department.
The Mandolin and Guitar Club is open to young men who play these instruments. Final membership is decided by competition, and those who become members are associated with the Glee Club in all its concerts.

The Military Band is an organization which has already attained a high degree of excellence, and one of which it is a great credit to be a member. It gives one or two concerts during the year, plays on public occasions, and furnishes the music for battalion drill of the Military department.

The University Chorus is organized with a view to arousing a musical spirit in the University, and is free to all students. It meets once a week for rehearsal of songs and choruses from the oratorios.

Zoological Club

The University Zoological Club is composed of advanced students and instructors in the zoological and physiological departments, together with such other biological instructors and advanced students as are interested in its subjects. Its sessions are devoted to the presentation and discussion of abstracts of recent biological literature and of the results of investigation by the members of the club. It meets weekly in Natural History Hall.

SPECIAL ADVANTAGES FOR WOMEN

Household Economics

No course of study is specifically outlined in household economics, but there are certain courses offered regularly, a combination of which affords the student a fair training in some branches of the subject. Such credit is given in each course as the work done justifies. The following courses may be mentioned:

1. Bacteriology (Botany 2). Those who take this course under household economics will devote their time to problems which come specifically within the range of household economy; fermentation in bread making and other cooking processes, will receive special attention. Those who take the course must have had elementary botany or a course in zoology.
2. Chemistry of foodstuffs (Chem. 5c and 18). This course is devoted to the analysis of foodstuffs, the sanitary examination of air, tests for adulteration, etc. The chemical changes in the various processes of cooking will also be studied. At least one year's study of chemistry (3 credits) is necessary to take the course with success.

3. Physiology. This is the first term's work in advanced physiology (Physiology 2). It treats especially of the physiology of digestion, the digestibility of various foods, and proper methods of cooking with reference to digestibility.

In addition to this course, there is a course of lectures on such subjects as ventilation, contagious diseases and their treatment, which is of high practical value (see Physical Culture 2).

4. Household decoration. The subject of art in the home is one of far reaching importance; exceptional opportunities for its study are offered in the departments of Art and Design and of Architecture. The course in the “Esthetics of Architecture” (Arch. 18) is devoted in part to the subject of decoration in the home.

5. Designing of residences. This is part of the regular course in Architectural Designing (Arch. 15). Young women are permitted to attend the lectures and to do the text-book work and receive credit therefor, but are not required to make the working drawings.

The Fine Arts

Drawing and Painting

Four years' work is offered in drawing, modeling, and painting. The student has large opportunity to specialize, either in pencil, crayon, pen and ink, or in oil or water-colors. A detailed description of the courses is given on pages 142-3. Students may enter for the study of art alone.

Music

Full courses in vocal and instrumental music, including piano and organ, are offered. As in the case of drawing and painting, students may pursue the study of music by itself.
SOCIAL ADVANTAGES

PHYSICAL CULTURE

A special gymnasium is set apart for the young women, and physical culture, under a competent instructor, is a part of the regularly accredited work of the University.

Careful attention is given to the correction of physical defects, to the promotion of good health, and to the development of a graceful carriage. In connection with the physical exercise, a course of lectures is provided, devoted especially to the proper care of health and the treatment of the more common bodily ailments.

SOCIAL ADVANTAGES

Educational training in the conventionalities is provided for in a practical way by the numerous social gatherings offered especially for the young women of the University by the wives of members of the faculty and by the lady members of the same.
ACCREDITED HIGH SCHOOLS

Accredited high schools are schools whose graduates may be admitted without examination to any course in the University for which their high school studies have prepared them. If so requested, a member of the faculty will inspect a school as to its facilities for teaching, its course and methods of instruction, and the general proficiency shown. The University bears the expense of this inspection. If the result of the investigation is favorable, a certificate of that fact is forwarded, and the name of the school is entered in the published list of accredited high schools. Annual reports are asked of these schools, and a reexamination will be made whenever it may be deemed necessary. The following is the wording of the certificate referred to above:

This is to certify that Pupils graduating from the High School during the Life of this Certificate may enter the Colleges of of the University of Illinois without Examination.

This Certificate is valid until................................ provided the Teaching Force and the Course of Study remain unchanged or material changes therein are approved by the University.

Given by order of the Faculty of the University at Urbana, Illinois, this.......of

... Registrar. .. President.

LIST OF ACCREDITED SCHOOLS

ACCREDITED FOR THE COLLEGES OF LITERATURE AND ARTS, ENGINEERING, SCIENCE, AND AGRICULTURE

<table>
<thead>
<tr>
<th>School</th>
<th>Superintendent</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alton</td>
<td>R. A. Haight</td>
<td>G. E. Wilkinson</td>
</tr>
<tr>
<td>Arcola</td>
<td>G. W. Smith</td>
<td>Lucile Brown</td>
</tr>
</tbody>
</table>

[230]
<table>
<thead>
<tr>
<th>School</th>
<th>Superintendent</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>T. H. Haney</td>
<td>Hattie M. Montgomery</td>
</tr>
<tr>
<td>Aurora—East</td>
<td>J. H. Freeman</td>
<td>Wm. J. Pringle</td>
</tr>
<tr>
<td>" —West</td>
<td>A. V. Greenman</td>
<td>Katherine Reynolds</td>
</tr>
<tr>
<td>" —Jennings Seminary</td>
<td></td>
<td>Rev. A. R. Cronce, President</td>
</tr>
<tr>
<td>Austin</td>
<td>N. D. Gilbert</td>
<td>B. F. Buck</td>
</tr>
<tr>
<td>Beardstown</td>
<td>G. W. Powell</td>
<td>Maude Tabor</td>
</tr>
<tr>
<td>Belvidere—North</td>
<td>H. A. Warren</td>
<td>Flora Fellows</td>
</tr>
<tr>
<td>Bloomington</td>
<td>E. M. Van Petten</td>
<td>F. B. Spaulding</td>
</tr>
<tr>
<td>Cairo</td>
<td>T. C. Clendenen</td>
<td>John Snyder</td>
</tr>
<tr>
<td>Camp Point</td>
<td>H. W. Bowersmith</td>
<td>Helen M. Grubb</td>
</tr>
<tr>
<td>Carthage</td>
<td>W. K. Hill</td>
<td>W. K. Hill</td>
</tr>
<tr>
<td>Canton</td>
<td>C. M. Bardwell</td>
<td>C. S. Aldrich</td>
</tr>
<tr>
<td>Carrolton</td>
<td>Clyde Stone</td>
<td>Lottie Weber</td>
</tr>
<tr>
<td>Centralia</td>
<td>Irwin F. Mather</td>
<td>Merton D. Cox</td>
</tr>
<tr>
<td>Charleston</td>
<td>W. T. Gooden</td>
<td>Wm. Wallis</td>
</tr>
<tr>
<td>Chicago—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calumet</td>
<td>Albert G. Lane</td>
<td>A. S. Hall</td>
</tr>
<tr>
<td>Englewood</td>
<td></td>
<td>J. E. Armstrong</td>
</tr>
<tr>
<td>Hyde Park</td>
<td></td>
<td>C. W. French</td>
</tr>
<tr>
<td>Jefferson</td>
<td></td>
<td>C. A. Cook</td>
</tr>
<tr>
<td>Lake</td>
<td></td>
<td>E. F. Stearns</td>
</tr>
<tr>
<td>Lake View</td>
<td></td>
<td>Jas. H. Norton</td>
</tr>
<tr>
<td>Marshall</td>
<td></td>
<td>L. J. Block</td>
</tr>
<tr>
<td>Medill</td>
<td></td>
<td>S. B. Sabin</td>
</tr>
<tr>
<td>North Division</td>
<td></td>
<td>O. S. Wescott</td>
</tr>
<tr>
<td>Northwest Div.</td>
<td></td>
<td>Franklin P. Fisk</td>
</tr>
<tr>
<td>South Division</td>
<td></td>
<td>Jeremiah Slocum</td>
</tr>
<tr>
<td>South Chicago</td>
<td></td>
<td>Chas. I. Parker</td>
</tr>
<tr>
<td>West Division</td>
<td></td>
<td>G. M. Clayberg</td>
</tr>
<tr>
<td>Clinton, Ia.</td>
<td>O. P. Bostwick</td>
<td>W. J. Greenwood</td>
</tr>
<tr>
<td>Danville</td>
<td>Joseph Carter</td>
<td>S. A. D. Harry</td>
</tr>
<tr>
<td>Davenport, Ia.</td>
<td>J. B. Young</td>
<td>H. H. Roberts</td>
</tr>
<tr>
<td>Decatur</td>
<td>E. A. Gastman</td>
<td>J. J. Sheppard</td>
</tr>
<tr>
<td>Delavan</td>
<td>F. L. Calkins</td>
<td>Stella Houghton</td>
</tr>
<tr>
<td>Dundee</td>
<td>S. M. Abbot</td>
<td>Julia M. Gay</td>
</tr>
<tr>
<td>DuQuoin</td>
<td>J. E. Wooters</td>
<td>D. B. Rawlins</td>
</tr>
<tr>
<td>Elgin</td>
<td>Eugene A. Mead</td>
<td>Walter F. Lewis</td>
</tr>
<tr>
<td>Elmwood</td>
<td>L. E. Flanegin</td>
<td>Jeanette C. Munson</td>
</tr>
<tr>
<td>Evanston</td>
<td>(Township High School)</td>
<td>H. L. Boltwood</td>
</tr>
<tr>
<td>Farmer City</td>
<td>C. C. Covey</td>
<td>C. C. Covey</td>
</tr>
<tr>
<td>School</td>
<td>Superintendent</td>
<td>Principal</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Freeport</td>
<td>R. S. Page</td>
<td>J. E. McGilvery</td>
</tr>
<tr>
<td>Galena</td>
<td>Ira C. Baker</td>
<td>F. G. Muttun</td>
</tr>
<tr>
<td>Galesburg</td>
<td>W. L. Steele</td>
<td>Frank D. Thomson</td>
</tr>
<tr>
<td>Galva</td>
<td>F. U. White</td>
<td>Hedwig Maul</td>
</tr>
<tr>
<td>Geneseo</td>
<td>M. F. Miller</td>
<td>Ada M. Schnabele</td>
</tr>
<tr>
<td>Harvey</td>
<td>F. L. Miller</td>
<td>J. E. Cable</td>
</tr>
<tr>
<td>Hillsboro</td>
<td>Josiah Bixler</td>
<td>Mattie Hunt</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>David T. Harris</td>
<td>Virginia Graves</td>
</tr>
<tr>
<td>Jerseyville</td>
<td>J. Pike</td>
<td>Edward B. Shafer</td>
</tr>
<tr>
<td>Joliet</td>
<td>W. H. Campbell</td>
<td>J. Stanley Brown</td>
</tr>
<tr>
<td>Kankakee</td>
<td>F. N. Tracy</td>
<td>Eugene C. Croby</td>
</tr>
<tr>
<td>Kewanee</td>
<td>A. C. Butler</td>
<td>H. S. Latham</td>
</tr>
<tr>
<td>La Grange (Township</td>
<td></td>
<td>E. G. Cooley</td>
</tr>
<tr>
<td>Lincoln</td>
<td>C. W. Harriman</td>
<td>Jane Kidd</td>
</tr>
<tr>
<td>Litchfield</td>
<td>J. E. Bryan</td>
<td>Thos. R. Amlie</td>
</tr>
<tr>
<td>Macomb</td>
<td>R. C. Rennick</td>
<td>J. S. Griffin</td>
</tr>
<tr>
<td>Mattoon</td>
<td>B. F. Armitage</td>
<td>E. Kate Carman</td>
</tr>
<tr>
<td>Maywood</td>
<td>J. Porter Adams</td>
<td>J. E. McKeen</td>
</tr>
<tr>
<td>Mendota—West</td>
<td>S. E. Beede</td>
<td>Myra J. Howes</td>
</tr>
<tr>
<td>Moline</td>
<td>H. M. Slauson</td>
<td>F. A. Manny</td>
</tr>
<tr>
<td>Monmouth</td>
<td>James C. Burns</td>
<td>W. D. McDowell</td>
</tr>
<tr>
<td>Morrison</td>
<td>W. A. Pratt</td>
<td>P. F. Burtch</td>
</tr>
<tr>
<td>Nashville</td>
<td>J. B. Bundy</td>
<td>J. W. Emmerson</td>
</tr>
<tr>
<td>Oak Park</td>
<td>W. H. Hatch</td>
<td>D. O. Barto</td>
</tr>
<tr>
<td>Olney</td>
<td>O. J. Bainum</td>
<td>Theodore Harley</td>
</tr>
<tr>
<td>Ottawa (Township</td>
<td></td>
<td>J. O. Leslie</td>
</tr>
<tr>
<td>Paris</td>
<td>W. W. Black</td>
<td>C. S. Hoover</td>
</tr>
<tr>
<td>Pekin</td>
<td>J. A. Hornberger</td>
<td>Josephine Goodheart</td>
</tr>
<tr>
<td>Peoria</td>
<td>N. C. Dougherty</td>
<td>A. W. Beasley</td>
</tr>
<tr>
<td>Pittsfield</td>
<td>W. B. Davis</td>
<td>Minna Worthington</td>
</tr>
<tr>
<td>Pontiac (Township</td>
<td></td>
<td>J. E. Bangs</td>
</tr>
<tr>
<td>Princeton (Township</td>
<td></td>
<td>R. A. Metcalf</td>
</tr>
<tr>
<td>Quincy</td>
<td>T. W. Macfall</td>
<td>Wm. F. Geiger</td>
</tr>
<tr>
<td>Rockford</td>
<td>P. R. Walker</td>
<td>B. D. Parker</td>
</tr>
<tr>
<td>Rock Island</td>
<td>James Ament</td>
<td>Walter N. Halsey</td>
</tr>
<tr>
<td>Roodhouse</td>
<td>P. M. Silloway</td>
<td>P. A. Boulton</td>
</tr>
<tr>
<td>Shelbyville</td>
<td>F. D. Jordan</td>
<td>T. A. Hillyer</td>
</tr>
<tr>
<td>Springfield</td>
<td>J. H. Collins</td>
<td>Wm. Helmle</td>
</tr>
<tr>
<td>Sterling—3d Dis’t</td>
<td></td>
<td>Anna Parmelee</td>
</tr>
<tr>
<td></td>
<td>H. L. Chaplin</td>
<td></td>
</tr>
</tbody>
</table>
ACCREDITED HIGH SCHOOLS

<table>
<thead>
<tr>
<th>School</th>
<th>Superintendent</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streator</td>
<td>(Township High School)</td>
<td>J. W. Coultas</td>
</tr>
<tr>
<td>Taylorville</td>
<td>(Township High School)</td>
<td>W. E. Andrews</td>
</tr>
<tr>
<td>Tuscola</td>
<td>A. G. Owens</td>
<td>Chas. S. Earle</td>
</tr>
<tr>
<td>Upper Alton</td>
<td>(Western Military Academy)</td>
<td>Albert M. Jackson</td>
</tr>
<tr>
<td>Virden</td>
<td>F. E. Kennedy</td>
<td>A. E. Evington</td>
</tr>
<tr>
<td>Waukegan</td>
<td>Frank H. Hall</td>
<td>Emily M. Coon</td>
</tr>
<tr>
<td>Wheaton</td>
<td>J. B. Russell</td>
<td>H. O. Staufft</td>
</tr>
</tbody>
</table>

ACCREDITED FOR THE COLLEGES OF ENGINEERING, SCIENCE, AND AGRICULTURE

<table>
<thead>
<tr>
<th>School</th>
<th>Superintendent</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aledo</td>
<td>P. J. Kuntz</td>
<td>Mabel Pepper</td>
</tr>
<tr>
<td>Augusta</td>
<td>H. M. Anderson</td>
<td>J. G. Moore</td>
</tr>
<tr>
<td>Batavia—West</td>
<td>E. M. Harris</td>
<td>Alice Downing</td>
</tr>
<tr>
<td>Belleville</td>
<td>H. D. Updike</td>
<td>H. W. Brua</td>
</tr>
<tr>
<td>Bement</td>
<td>Chas. McIntosh</td>
<td>W. N. Tobie</td>
</tr>
<tr>
<td>Champaign</td>
<td>C. A. Bowsher</td>
<td>Lottie Switzer</td>
</tr>
<tr>
<td>Chicago—Manual Training</td>
<td>H. H. Belfleld, Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English High and Manual Training</td>
<td>A. R. Robinson</td>
</tr>
<tr>
<td>DeKalb</td>
<td>John T. Bowles</td>
<td>Lucy H. Carson</td>
</tr>
<tr>
<td>Dixon—North</td>
<td>E. C. Smith</td>
<td>Lawrence De Graff</td>
</tr>
<tr>
<td>" —South</td>
<td>Wm. Jenkins</td>
<td>Mary S. Porteous</td>
</tr>
<tr>
<td>East St. Louis</td>
<td>J. F. McCullough</td>
<td>Chas. L. Manners</td>
</tr>
<tr>
<td>El Paso</td>
<td>Anna E. Hill</td>
<td>Rose M. Hayden</td>
</tr>
<tr>
<td>Effingham</td>
<td>I. A. Smothers</td>
<td>G. E. Marker</td>
</tr>
<tr>
<td>Flora</td>
<td>J. L. Hughes</td>
<td>E. A. Miner</td>
</tr>
<tr>
<td>Gibson City</td>
<td>J. D. Shoop</td>
<td>R. G. Jones</td>
</tr>
<tr>
<td>Griggsville</td>
<td>H. C. McCarrel</td>
<td>Jennie Chrysuf</td>
</tr>
<tr>
<td>Harvard</td>
<td>Chas. W. Groves</td>
<td>Anna M. Morrow</td>
</tr>
<tr>
<td>Henry</td>
<td>W. S. Wallace</td>
<td>Gertrude Hull</td>
</tr>
<tr>
<td>Lacon</td>
<td>J. M. Frost</td>
<td>Grace E. Germain</td>
</tr>
<tr>
<td>Lewistown</td>
<td>Burton E. Nelson</td>
<td>Hattie M. Kasmuth</td>
</tr>
<tr>
<td>Lexington</td>
<td>J. B. Nichols</td>
<td>J. B. Nichols</td>
</tr>
<tr>
<td>LeRoy</td>
<td>B. F. Templeton</td>
<td>Getty Van Buskirk</td>
</tr>
<tr>
<td>Lyons, Ia.</td>
<td>J. H. Breese</td>
<td>Clara Bramber</td>
</tr>
<tr>
<td>Marengo</td>
<td>C. W. Hart</td>
<td>Annie M. Andrus</td>
</tr>
<tr>
<td>Mason City</td>
<td>C. O. Du Bois</td>
<td>T. B. Denham</td>
</tr>
<tr>
<td>Monticello</td>
<td>E. A. Fritter</td>
<td>T. C. Frye</td>
</tr>
<tr>
<td>Oregon</td>
<td>W. J. Sutherland</td>
<td>Antoinette E. Latson</td>
</tr>
</tbody>
</table>
MILITARY SCIENCE

The military instruction is under the charge of a graduate of the U. S. Military Academy, and officer of the regular army of the United States. The course as a whole has special reference to the duties of officers of the line. A full supply of arms and ammunition is furnished by the War Department, including 300 cadet rifles and accoutrements, and two field pieces of artillery.

Every male student, able to perform military duty, and not excused for sufficient cause, is required to drill twice each week until he has gained six creditable term-records. He is also required to study Drill Regulations for Infantry and to recite upon the same once a week until he passes two creditable term-examinations. This practical instruction begins as soon as possible after he enters the University; but a preparatory student carrying no freshman studies and not expecting to matriculate during the year, is not permitted to drill. The standings in study and drill are placed on record, with other class credits; two terms of recitations and drill count one credit, and the four

<table>
<thead>
<tr>
<th>School</th>
<th>Superintendent</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paxton</td>
<td>J. M. Robinson</td>
<td>W. K. Yeakel</td>
</tr>
<tr>
<td>Peru</td>
<td>W. W. Wirt</td>
<td>L. Morgan</td>
</tr>
<tr>
<td>Polo</td>
<td>I. M. Bridgman</td>
<td>Alice F. Bridgman</td>
</tr>
<tr>
<td>Rochelle</td>
<td>C. F. Philbrook</td>
<td>Minnie G. Steele</td>
</tr>
<tr>
<td>Rossville</td>
<td>J. S. Ragsdale</td>
<td>C. M. Boord</td>
</tr>
<tr>
<td>Savanna</td>
<td>B. F. Hendricks</td>
<td>Jennie Wright</td>
</tr>
<tr>
<td>Sparta</td>
<td>S. B. Hood</td>
<td>J. M. Nickles</td>
</tr>
<tr>
<td>Sterling</td>
<td>S. B. Hursh</td>
<td>Mary D. Stuart</td>
</tr>
<tr>
<td>Sullivan</td>
<td>H. E. Kelly</td>
<td>Ella Lowe</td>
</tr>
<tr>
<td>Sycamore</td>
<td>A. J. Blanchard</td>
<td>Sarah E. Robinson</td>
</tr>
<tr>
<td>Vienna</td>
<td>M. N. McCartney</td>
<td>Ada V. McCall</td>
</tr>
<tr>
<td>Virginia</td>
<td>C. V. McReynolds</td>
<td>Lydia G. Clark</td>
</tr>
<tr>
<td>Warren</td>
<td>W. C. Smith</td>
<td>O. M. Buser</td>
</tr>
<tr>
<td>Washington</td>
<td>H. W. Veach</td>
<td>Anna M. Briggs</td>
</tr>
<tr>
<td>Wilmington</td>
<td>J. J. Eckman</td>
<td>Helen J. Buss</td>
</tr>
<tr>
<td>Winchester</td>
<td>W. A. Bowman</td>
<td>Hattie Hulick</td>
</tr>
<tr>
<td>Woodstock</td>
<td>L. B. Easton</td>
<td>Mary Richards</td>
</tr>
<tr>
<td>Wyoming</td>
<td>J. M. Hutchinson</td>
<td>Emma Lee</td>
</tr>
<tr>
<td>Yorkville</td>
<td>Richard Heywood</td>
<td>Mabel W. Barrett</td>
</tr>
</tbody>
</table>
remaining terms of drill another, and are requisite to graduation in every University course.

Appointments in the battalion are made on nomination by the professor in charge and confirmation by the faculty.

Students who have passed two examinations in the drill regulations and who have gained two term-credits in drill practice are eligible for corporals; those having three term credits in each are eligible for sergeants; and those having six term-credits in each, for lieutenants and for officers of higher rank.

The battalion (six companies) is composed mainly of the members of the freshman and sophomore classes, the first supplying the corporals, the second, the sergeants, while the captains and lieutenants are taken from those of the junior and senior classes who have passed through the lower grades satisfactorily.

A special military scholarship, good for one year, is open to each student who attains the grade of a commissioned officer, the value of which is paid the holder at the close of the year.

An artillery detachment is organized mainly from the second year, or sophomore, class, which receives practical instruction twice each week during the college year.

Towards the close of the spring term, a committee appointed by the faculty examines candidates for nomination to the governor of the state to receive commissions as brevet captains in the state militia. Candidates must be members of the senior class in full standing at the time of this examination; must have completed the course of military studies; must have served three terms as captains or lieutenants, and must be approved by the faculty as having good reputations as scholars, officers, and gentlemen.

Under the authority of the acts of corporation, the trustees have prescribed a uniform of cadet gray, coat trimmed with black mohair braid, trousers with black cloth stripe, cut after the U. S. army pattern. The uniform of the cadet officers is of dark blue cloth for coat and light blue for trousers; cap for all of dark blue cloth, army pattern, with university badge embroidered thereon in gold bullion; white gloves; the uniform of the band dark blue throughout, with special trimmings.

The University Cornet Band is composed of students, and every full term of service therein is counted as one term of drill.
The object of the Department of Physical Training is to teach and to put into practice the best methods of preserving health, of gaining physical vigor, of correcting imperfect development, and of avoiding injury and disease. Careful physical examinations are made and special exercises are prescribed to suit individual cases. Special attention is given to those who do not reach the normal in strength or in harmonious bodily development. The records of successive measurements and examinations show what results have been gained. Certificates of the proper examiner are required for membership in the athletic teams. Credits towards graduation are given for the completion of the work described in the description of courses.

Incidentally the department furnishes recreation to the students of the University and makes a way for proper and helpful amusements.

Men and women have their practice and much of their instruction separately in physical training, but all students have equal consideration in the provisions made for the work and in the freedom of choice under the necessary regulations. For both sexes the subjects are taught and the work is directed so as to secure, as largely as possible, all of the benefits, and, at the same time, to avoid the evils connected therewith. The director is a regular member of the faculty; experienced instructors and coaches are employed; the practical work indoors and outdoors is under close supervision. The director of the women’s work is an accomplished woman, as well as a thoroughly trained teacher.

The facilities for this work are excellent. The gymnasium for men—Military Hall—has a floor space of 100x150 feet, affording free room for developing apparatus, ball courts, running track, dressing rooms and baths. The adjoining “Illinois Field” serves admirably well for games and for track purposes, and here take place intercollegiate contests, under favorable conditions, in football, baseball, track athletics, and tennis.

The women’s gymnasium—in Natural History Hall—occupies very attractive quarters, and is well equipped. The pastime grounds nearby, in use through the year, when the weather permits, have a sixteen-lap running track, eight
tennis courts, two basket ball fields, and space for hurdling, handball, and other suitable amusements.

GENERAL INFORMATION

GENERAL LECTURE COURSE

The following lectures, primarily for the students, were given at the University during the year:

By Professor I. O. Baker:
 October 8, The Distance to the Stars.

By Professor E. W. Bemis, of Chicago:
 October 15, The Labor Movement in America.
 October 16, Problems in Monopoly.
 October 17, The Demand for More Money.

By Professor C. M. Moss:
 October 22, Some Phases of Athenian Legislation.

By Mrs. Helen Campbell, of Chicago:
 November 4, The Statics and Dynamics of Household Economy.
 November 5, The House.
 November 6, Organism of the House.
 November 7, Decoration.
 November 11, Furnishing.
 November 12, Nutrition.
 November 13, Food and its Preparation.
 November 14, Service.

By Isham Randolph, of Chicago:
 November 25, The Chicago Drainage Canal.

By Miss Mathilde Wergeland, of Chicago:
 December 2, Assyrian and Egyptian Art: Symbolism; Early Greek Art.
 December 3, Greek and Roman Art: Idealism.
 December 4, Art During the Middle Ages: Spiritualism; Renaissance: Dawn of Realism.
 December 5, Renaissance and Modern Art.

By Professor Burt G. Wilder, of Ithaca, N. Y.:
 January 7 and 8, The Brains of Men and Apes; Their Resemblances and Differences.
By **Lorado Taft**, of Chicago:

January 14, The Great Masters of the Sixteenth and Seventeenth Centuries.

January 15, Contemporaneous Art, as Illustrated in the Gallery of the Luxembourg (Paris).

By Hon. John G. Hill, of Cincinnati:

January 21, Water Supplies for Cities.

By **Professor C. Lloyd-Morgan**, of Bristol, England:

February 3 and 4, Habit and Instinct; a Study in Heredity.

By **Dwight C. Morgan**, of Dwight, Illinois:

March 9, Railroad Crossings on the Same Level, and Their Protection by Interlocking and Signal Appliances.

CONCERTS AND RECITALS DURING THE YEAR

By **Professor Walter Howe Jones**:

October 1, 1895, Chopin Recital.

By **Miss Elinor Edwina Ellsworth**:

October 29, 1895, Song Recital.

By Glee and Mandolin Clubs:

December 6, 1895, Concert.

By **Mme. Fannie Bloomfield-Zeisler**:

December 9, 1895, Piano Recital.

By **Miss Adeline Whitney Rowley**:

January 28, 1896, Song Recital.

By the University Military Band:

February 14, 1896, Concert.

By **Mr. Max Bendix** and Mr. **F. W. Carberry**:

March 3, 1896, Violin and Vocal Recital.

By the Chicago Orchestra, Mr. **Theodore Thomas**, Conductor:

April 20, 1896, Concert.
EXPENSES

BOARD

The University does not furnish board, but there is a large number of suitable private places in Urbana and Champaign, within walking distance of the University, and easily accessible by electric railway, where students can obtain table board and rooms. There are several students' clubs at which the cost of meals is about two and a half dollars a week.

The Business Agent and the Young Men’s and Young Women’s Christian Associations of the University will aid new students in procuring rooms and boarding places.

FEES

The Tuition is Free in all the University classes for matriculated students.

The Matriculation Fee entitles the student to membership in the University until he completes his studies, and is.................................$10 00
The Diploma Fee, payable before graduation, is............ 5 00
The Term Fee, for incidental expenses, is, for each student, except in Graduate School.......................... 7 50
The Tuition Fee, for all special students (except in music), and for pupils of the Preparatory School, per term, is.... 5 00

Music Fees.—Students enrolled in the department of music only, pay no matriculation fee or term fee. They must, however, pay the following music fees:

<table>
<thead>
<tr>
<th></th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano, Organ, or Voice</td>
<td>$25 00</td>
<td>$20 00</td>
<td>$20 00</td>
</tr>
<tr>
<td>(Two lessons a week.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piano, Organ, or Voice</td>
<td>15 00</td>
<td>12 00</td>
<td>12 00</td>
</tr>
<tr>
<td>(One lesson a week.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony, counterpoint, fugue, etc., in classes not to exceed four,</td>
<td>$10 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>four, $10 00 per term.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[239]
Students enrolled in any one of the colleges, who have paid the fees therein, may enter the department of music on payment of the following fees:

<table>
<thead>
<tr>
<th></th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano, Organ, or Voice</td>
<td>$20.00</td>
<td>$15.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>(Two lessons a week.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piano, Organ, or Voice</td>
<td>12.00</td>
<td>9.00</td>
<td>9.00</td>
</tr>
<tr>
<td>(One lesson a week.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No deduction is made on account of absence in either course, except in case of protracted illness.

Students can rent pianos for practice by applying to the head of the music department.

Laboratory Fees.—Each student working in laboratories, or in the draughting or engineering classes, is required to make a deposit varying from 50 cents to $10, to pay for chemicals and apparatus used, and for any breakages or damages.

All Bills due the University must be paid within ten days after the student enters classes.

Necessary Expenses

The following are estimated minimum and maximum annual expenses, exclusive of books, clothing, railroad fare, laboratory fees, if any, and small miscellaneous needs:

<table>
<thead>
<tr>
<th></th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term fees</td>
<td>$22.50</td>
<td>$22.50</td>
<td>$22.50</td>
</tr>
<tr>
<td>Room rent for each student (two in a room)</td>
<td>22.50</td>
<td>50.00</td>
<td>125.00</td>
</tr>
<tr>
<td>Table board in boarding houses and clubs</td>
<td>90.00</td>
<td>126.00</td>
<td>180.00</td>
</tr>
<tr>
<td>Fuel and light</td>
<td>10.00</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Washing</td>
<td>12.00</td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>Total</td>
<td>$157.00</td>
<td>$231.50</td>
<td>$231.50</td>
</tr>
<tr>
<td>Board and room in private houses, per week</td>
<td>4.00</td>
<td>6.00</td>
<td></td>
</tr>
</tbody>
</table>

Caution to Parents—Students' Funds

The Business Agent will receive on deposit any funds parents may intrust to him to meet the expenses of their sons and daughters. No greater error can be committed than to send young people from home with large amounts of spending money, without the authoritative care of some prudent friend. Half the dissipation in colleges springs from excessive allowances of money. Students have little real need for money beyond that required for fees, board bills, and books. The attention of parents and guardians to this matter is earnestly requested, especially in the case of those students who are under age.
PREPARATORY SCHOOL

INSTRUCTORS

Edward G. Howe, Principal, Natural Science.
Herman S. Piatt, A.M., French.
Nathan A. Weston, B.L., History and Geometry.
Ralph P. Smith, Ph.B., German.
Lillie Adelle Clendenin, English.
Charles N. Cole, A.B., Latin and Greek.
Reuben S. Douglass, A.B., Algebra.
George D. Hubbard, Science.

This school has an efficient corps of instructors and ample equipment for thorough work along those lines which will best prepare the student for the University. The school offers special advantages to young men and women who, on account of advanced age or prolonged absence from school, are out of touch with the high school.

ADMISSION

Candidates for admission must be at least fifteen years of age, and must pass satisfactory examinations in the following subjects:

1. Arithmetic.—A thorough knowledge is required of fundamental operations, simple and denominate numbers, the metric system of weights and measures, common and decimal fractions, practical measurements, percentage, ratio and proportion.

2. English.—The examination is intended to test the student’s vocabulary and his knowledge of grammar.

3. Geography.—An accurate knowledge of elementary physical and political geography is required.

4. History.—As a foundation in this subject, a knowledge of the early settlement of North America and of the growth and development of the United States, is required. A knowledge of the nature and operation of the forces active in
American life is desired, rather than the memorization of isolated dates and names.

Entrance should be made at the opening of the term. Examinations are held in the rooms of the school. For the fall term, 1896, these examinations occur on Thursday, Friday, and Saturday, the 3d, 4th, and 5th of September; for the winter and spring terms, on the two days previous to the opening of each term. Examinations on these dates are free, but for examinations at other times a fee of three dollars is charged.

Examinations may be conducted in Illinois by county superintendents of schools in the same manner as for teachers' certificates, and their favorable reports will be accepted for entrance. First or second grade teachers' certificates from superintendents of Illinois will be taken for the same purpose, as will also certificates of the accomplishment of not less than one full year's work in a high school accredited by the University.

COURSE OF STUDY

The time necessary for the completion of the course offered is not fixed, but depends on the ability and previous training of the student. Applicants will be admitted at any time on presenting proof that they are prepared to pursue the selected subjects. Preparatory students generally carry four studies, one of which should be such as needs but little work outside of the class room. The number varies, however, with the ability of the student and the nature of the course.

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Winter Term</th>
<th>Spring Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing</td>
<td>Drawing</td>
<td>Drawing</td>
</tr>
<tr>
<td>History</td>
<td>Drawing</td>
<td>Drawing</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>French</td>
<td>French</td>
<td>French</td>
</tr>
<tr>
<td>Greek</td>
<td>Greek</td>
<td>Greek</td>
</tr>
<tr>
<td>German</td>
<td>German</td>
<td>German</td>
</tr>
<tr>
<td>Latin</td>
<td>Latin</td>
<td>Latin</td>
</tr>
</tbody>
</table>

Details of work can be found in the alphabetically arranged plan of instruction below.
Mathematics

Algebra Algebra Algebra
Geometry Geometry Geometry

Science

Physiology Zoology Botany
Physics Physics

Students must choose from the above list such studies as they require for their chosen courses in the University, taking those under each head in the order given, except the optional languages and sciences.

COURSES OF INSTRUCTION

ALGEBRA

Rapidity and accuracy in all operations is rigidly required. Special emphasis is laid upon the use of purely literal expressions, radicals, fractional and negative exponents, and upon the fundamental nature of equation.

By terms, the work is divided as follows:

1. Fundamental processes, factoring, divisors, and multiples, fractions, and simple equations with one or more unknown quantities.

2. Involution and evolution, theory of exponents, radicals, and quadratic equations.

3. Theory of quadratic equations, inequalities, theory of limits, ratio and proportion, variation and the progressions.

One class will review the entire subject in the fall term. If five or more apply, a beginning class will be formed in January.

BOTANY

This is a study of plants rather than of books about plants, although books are not disregarded. It is an introduction to the science, and is intended to give an acquaintance with the chief features of the subject. The analysis of simple flowers and the preparation of a small herbarium of correctly named and properly mounted plants is required.
ENGLISH

The subject is presented in such a way as to increase the student's vocabulary and to develop elegance and exactness of expression in his composition. Advanced grammar and rhetoric are taught in connection with this work. The study of literary masterpieces is also pursued to furnish material for the weekly written exercises, and to cultivate a taste for good literature. Considerable collateral reading in English and American authors is therefore required.

The work, by terms, is as follows:

FIRST YEAR

SECOND YEAR

A course of outside reading runs through the two years.

FREE-HAND DRAWING

This subject is best taken in the first term in order that pupils may have the benefit of its training in the studies which follow. Frederick's Notes on Free-Hand Drawing.

FRENCH AND GERMAN

Students in the Preparatory Department take the first year's work of the regular University German and French classes. The Joynes-Meissner German Grammar and Van Daell's Beginning French, together with short stories and sketches of varying difficulty, form the basis of the work.

GEOMETRY

Special attention is paid to the development of the idea of mathematical demonstration; and, as many students who can
reason logically cannot express their ideas clearly, due attention is paid to correctness of form. As soon as the student has attained the art of rigorous demonstration, he is required to produce constructions and demonstrations for himself. Considerable attention is devoted to original work.

The work, by terms, is as follows:
1. All of Plane or Solid* Geometry.
2. Both Plane* and Solid Geometry.

GREEK

The study of this subject should, when possible, be preceded by at least one year of Latin.

The work, by terms, is arranged as follows:

FIRST YEAR

2. Goodwin’s Greek Grammar, and Moss’s First Greek Reader.
3. The Grammar and Xenophon’s Anabasis with Greek prose composition.

SECOND YEAR

1. Continuation of third term’s work.
2. The Grammar and selections from Xenophon’s Hellenica with prose composition based on the text read.
3. The Grammar and selections from Herodotus with prose composition based on the text read.

The authors named in the last four terms will not be insisted upon in the case of those offering Greek for entrance. An equivalent amount from any other authors will be accepted. Ability to read at sight passages of average difficulty will be deemed of major importance.

HISTORY

Instruction in this subject is confined to English and American history. A detailed study of the rise and progress

* If five or more apply,
of the English-speaking people in England and America is made, and considerable attention is given to the origin and development of representative government. The work extends through one year; one-half of the time is devoted to English, and the other half to American, history.

The work, by terms, is as follows:
1. English History through the Revolution of 1688.
2. English History from 1688 to the present time, and American History to the Revolutionary War.
3. American History from the Revolutionary War to the present time.

LATIN

The ground covered consists of the grammar and selections from Caesar, Sallust, Cicero, and Vergil. Translation of English into Latin is made a prominent part of the work, and in connection with the Vergil the scansion of hexameter verse and matters of historical and mythological interest are studied. The Roman method of pronunciation is used, with special attention to quantity. *Allen and Greenough’s Grammar, and Collar’s Prose Composition.*

By years, the work is as follows:

FIRST YEAR

SECOND YEAR

Caesar, Sallust, Cicero.

THIRD YEAR

Cicero, Vergil.

PHYSICS

This study is so presented as to cultivate habits of careful observation, and to develop in the student the ability to reach general conclusions inductively by means of exact experiment. In all laboratory work the student is required to keep a notebook containing a complete record of experiments performed. The work is begun in the winter term.
This is the first science studied because it is one in which the student should be early informed, and because it also serves as an introduction to the study of zoology. Charts, a skeleton, a manikin, and illustrative material from the lower animals are used.

ZOOLOGY

This study logically follows Physiology. Through the study of typical animals the subject is so presented as to lead the student to a knowledge of methods of scientific classification in the natural sciences.

REGULATIONS

Reports regarding all non-resident and minor students (and, upon request, regarding any others) are sent to parents or guardians as soon as students are settled in their work, and reports regarding all students are sent at the close of each term.

The calendar of the Preparatory School is the same as that of the University.

For information concerning fees and expenses, see page 239. For special information with regard to the Preparatory School, address Edward G. Howe, Urbana, Illinois.
LIST OF STUDENTS

GRADUATE SCHOOL

Burnham, Alton Cyril, B.S., Michigan Agricultural Coll., Urbana, Mechanical Eng’g.
Busey, Frank Lyman, B.S., Urbana, Mechanical Eng’g.
Capps, Earl Vanhise, B.S., Mt. Pulaski, Electrical Eng’g.
Chipman, Paul, B.S., Champaign, Civil Engineering.
Cole, Charles Nelson, A.B., Champaign, Philosophy.
Foote, Ferdinand John, B.S., Champaign, Electrical Eng’g.
Fraser, Wilber John, B.S., Champaign, Agriculture.
Goodenough, George Alfred, B.S., Michigan Agricultural Coll., Champaign, Mechanical Eng’g.
Hempel, Adolph, B.S., Urbana, Natural Science.
Hood, Laura S A.B., Indiana State Univ., Dublin, Ind., Mathematics.
King, Francis Edward, B.S., White Hall, Pedagogy.
Pillsbury, Bertha Marion, A.B., Urbana, Classical.
Richart, Frederick William, B.S., Carbondale, Mechanical Eng’g.
Scott, Daisy Coffin, B.L., Champaign, Latin.
LIST OF STUDENTS

Sparks, Marion Emeline, A.B.,
Univ. of Ill., Urbana, Classical.
Thompson, Marion, B.L.,
Univ. of Ill., Bement, Eng. and Mod. Lang.
Weston, Nathan Austin, B.L.,
Univ. of Ill., Champaign, Economics and Hist.
Wilder, Charles Thornton, B.S.,
Univ. of Ill., Champaign, Natural Science.

RESIDENT GRADUATES

Boggs, Cassandra Armstrong, B.L.,
Univ. of Ill., Urbana, Physical Culture.
Call, Hortense, B.S.,
Univ. of Ill., Urbana, Natural Science.
Jones, Isabel Eliza,
Univ. of Ill., Champaign, Art and Design.
Moore, Grace Lillian, B.S.,
Univ. of Ill., Tolono, Natural Science.
Perry, Joseph Albert,
U. S. Naval Academy,
Seibert, Emma Effie, B.S.,
Univ. of Ill., Cornell, Civil Engineering.
Stewart, Mabel, B.S.,
Univ. of Ill., Riverdale, Art and Design.
Weston, Margaret, B.L.,
Univ. of Ill., Champaign, Physical Culture.

SENIORS

Adams, Edward Langford,
Austin, Electrical Eng’g.
Alpiner, Amelia Darling,
Kankakee, Eng. and Mod. Lang.
Bailey, Leonard Lionel,
Chicago, Architectural Eng’g.
Beach, James George,
Apalachin, N. Y., Arch. Eng’g.
Begole, Joshua Franklin,
O’Fallon, Mechanical Eng’g.
Bennett, Georgia E,
Milford Center, O., Chemistry.
Besoire, Nellie,
Urbana, Latin.
Blakeslee, James Woodbury,
Kinmundy, Eng. and Mod. Lang.
Boyd, George Eugene,
Roseville, Civil Engineering.
Brenke, William Charles,
Chicago, Chemistry.
Brower, Ralph Plumb,
Champaign, Civil Engineering.
Buck, Luella Eugenia,
Philo, Natural Science.
Burt, Henry Jackson, Urbana, Civil Engineering.
Polo, Eng. and Mod. Lang.
Champaign, Electrical Eng’g.
Champaign, Latin.
Quincy, Architecture.
Quincy, Chemistry.
Rantoul, Latin.
Mendota, Electrical Eng’g.
Rock Falls, Electrical Eng’g.
East Lynn, Civil Engineering.
Quincy, Electrical Eng’g.
Ridge Farm, Natural Science.
Urbana, Natural Science.
Chicago, Architectural Eng’g.
St. Mary’s, Latin.
Chicago, Chemistry.
Illiopolis, Civil Engineering.
Ivesdale, Mechanical Eng’g.
Kewanee, Architecture.
Mendota, Electrical Eng’g.
Champaign, Eng. and Mod. Lang.
Milan, Civil Engineering.
Mascoutah, Architecture.
Urbana, Natural Science.
Blandinsville, Natural Science.
Peoria, Architectural Eng’g.
Champaign, Philosophy.
Danville, Eng. and Mod. Lang.
La Prairie, Civil Engineering.
Urbana, Eng. and Mod. Lang.
Urbana, Latin.
Blue Mound, Architecture.
Nashville, Architecture.
Byron, Mechanical Eng’g.
Champaign, Architecture.
Chicago, Mechanical Eng’g.
Kewanee, Mechanical Eng’g.
Rockford, Architecture.
Champaign, Electrical Eng’g.
Urbana, Eng. and Mod. Lang.
Ripon, Wis., Architecture.
Mather, Althea S,
Maxwell, Charles Jacob,
Millar, Adam Vause,
Milne, Edward Lawrence,
Moore, Minnie Rose,
Morse, Jeddidiah D,
Morse, Samuel Theodoré,
Myers, James William,
Naughton, Katherine Louise,
Noble, Isabelle,
Noble, Mary Elizabeth,
Noble, William,
Ogiwara, Chijokichi,
Orr, Edward Ellsworth,
Pfeffer, John Edward,
Phillippi, Francis Marion,
Porter, Robert Knight,
Reasoner, Matthew Aaron,
Risor, Cady Alvern,
Row, George Edward,
Sammis, John Langley,
Sample, John C,
Saunders, Harry J,
Sayers, William Wesley,
Schacht, Frederick William,
Scott, George Harvey,
Shea, John Clark,
Simons, Alexander Martin,
Smith, Louie Henrie,
Smith, Sherman,
States, William Daniel,
Steele, William LaBarthe,
Stone, Percy Allyn,
Strehlow, Oscar Emil,
Sweney, Don,
Teeple Wallace Douglas,
Thompson, Fred Lawrence,
Van Orstrand, Charles Edwin,
Vickery, Charles Roy,
deVries, Steven George,
Wakefield, George Mighell,
Joliet, Joliet,
Champaign, Champaign,
Mattoon, Mattoon,
Orange, N. J., Orange, N. J.,
Peoria, Peoria,
Champaign, Champaign,
Carlinville, Carlinville,
Chrisman, Chrisman,
Champaign, Champaign,
Urbana, Urbana,
Urbana, Urbana,
Champaign, Champaign,
Tokio, Japan, Tokio, Japan,
Quincy, Quincy,
Bondville, Bondville,
Burnside, Burnside,
Champaign, Champaign,
Fisher, Fisher,
Eureka, Eureka,
Centralia, Centralia,
Jacksonville, Jacksonville,
Lebanon, Lebanon,
Chicago, Chicago,
Champaign, Champaign,
Moline, Moline,
Rantoul, Rantoul,
Danville, Danville,
Quincy, Quincy,
Crystal Lake, Crystal Lake,
LeRoy, LeRoy,
Elwood, Elwood,
Springfield, Springfield,
Bradfordton, Bradfordton,
Champaign, Champaign,
Gettysburg, Pa., Gettysburg, Pa.,
Marengo, Marengo,
Isabel, Isabel,
Pekin, Pekin,
Pekin, Pekin,
Waterman, Waterman,
Webber, Hubert Anthony, Mt. Vernon, Architecture.
Weinshenk, Theodore, Champaign, Mechanical Eng'g.
Wharton, Rebecca Gaskin, Payson, Eng. and Mod. Lang.
White, Solon Marks, Sandbach, Natural Science.
Whitham, Myron Elwin, Warren, Mechanical Eng'g.
Whittemore, Floyd, Sycamore, Electrical Eng'g.
Williams, Robert, Carthage, Eng. and Mod. Lang.
Wills, George Arthur, Chicago, Electrical Eng'g.
Wright, Wilber Hoyt, Normal, Philosophy.

JUNIORS

Anderson, George Forbes, Carbondale, Civil Engineering.
Armstrong, James Ellis, Bondville, Eng. and Mod. Lang.
Barr, George Andrew, Joliet, Philosophy.
Beadle, Thomas B, Kewanee, Chemistry.
Beal, Alvin Casey, Mt. Vernon, Agriculture.
Beebe, Charles David, Evanston, Mechanical Eng'g.
Brandt, Eugene Hermann, Appleton City, Mo. Architecture.
Braucher, Ralph Waldo, Champaign, Architecture.
Brower, Lyle Ireneus, Rock Falls, Chemistry.
*Brubaker, William Arthur, Champaign, Electrical Eng'g.
Burke, William Harry, Carthage, Architecture.
Capron, Frank Read, Argo, Electrical Eng'g.
Carpenter, Hubert Vinton, Champaign, Electrical Eng'g.
Chester, Guy Jacob, Champaign, Electrical Eng'g.
Chester, Manly Earl, Quincy, Electrical Eng'g.
Clarke, Octave Besançon, Champaign, Electrical Eng'g.
Coffeen, Harry Clay, Winfield, Ia. Electrical Eng'g.
Crellin, Charles Virgil, Urbana, Natural Science.
Dewey, James Ansel, Urbana, Natural Science.
Dewey, Louise Sarah, Burlington, Kan., Mech'cal Eng'g.
Dull, William Raymond, Columbus, Ind., Architecture
Dunlap, Elmer Raymond, Kewanee, Architecture.
Errett, Harry Boyd, Chicago, Mechanical Eng'g.
Fergus, William Loveday, Shiloh, Municipal Eng'g.
Fischer, Louis Englemann, Urbana, Natural Science.
Forbes, Ernest Browning, Urbana, Architecture.
Forbes, Stuart Falconer, Chicago, Chemistry.
Frees, Herman Edward, *Deceased,
Gayman, Bert A,
Gearhart, Orval Lee,
Grimes, George Lyman,
Gulick, Clyde Denny,
Hadsall, Harry Hugh,
Hammers, Morgan J,
Havard, Oliver David,
Hobart, Albert Claude,
Hopper, Georgia Etherton,
Horn, Carl John,
Howison, Charles,
Hughes, Frank Alexis,
Ice, Meldora,
Johnson, Martin Nathaniel,
Keeler, Harry,
Kirkpatrick, Asa Baird,
Kirkpatrick, Harold H,
Kistner, Theodore Charles.
Kratz, Laura,
Larson, Charles Sigurd,
Leffler, Burton Rutherford,
Leigh, Charles Wilbur,
McFadden, Belle Lorraine,
McLane, John Wallace,
Mann, Arthur Richard,
Manny, Fred Hugh,
Marsh, Loren William,
Marsh, Norman Foote,
Morgan, Walter Montgomer
Munhall, Grace May,
Murphy, Francis Joseph,
Noble, Harry Charles,
Norton, Belle,
Nye, Carl Merriman,
Oyler, Harry Schuyler,
Paine, Arthur Elijah,
Parr, John Louis,
Paul, Arthur Ernest,
Pepper, William Allen,
Pitney, Clarence Orville,
Pohlman, John Edward,
Champaign, Mechanical Eng’g.
Farmer City, Architectural Eng’g.
Moline, Mechanical Eng’g.
Champaign, Natural Science.
Wilmington, Civil Engineering.
Champaign, Mechanical Eng’g.
Urbana, Electrical Eng’g.
Elgin, Civil Engineering.
Champaign, Eng. & Mod. Lang.
Naperville, Architecture.
Sandwich, Architecture.
Pueblo, Colo., Civil Engineering.
Gifford, Architecture.
Moline, Mechanical Eng’g.
Chicago, Chemistry.
Elmwood, Natural Science.
Mayview, Classical.
Carlinville, Architecture.
Monticello, Eng. & Mod. Lang.
Chicago, Electrical Eng’g.
Naperville, Civil Engineering.
La Prairie Centre, Mathematics.
Champaign, Latin.
Boonsborough, Ia., Chemistry.
Mannville, Fla., Mech. Eng’g.
Mound, Natural Science.
Joliet, Electrical Eng’g.
Upper Alton, Architecture.
Kinnmundy, Eng. & Mod. Lang.
Champaign, Eng. & Mod. Lang.
Long Grove, Ia., Chemistry.
Champaign, Eng. & Mod. Lang.
Urbana, Eng. & Mod. Lang.
Moline, Municipal Eng’g.
Mt. Pulaski, Chemistry.
Rosemond, Classical.
Wyoming, Wis., Architecture.
Chicago, Chemistry.
Joliet, Electrical Eng’g.
Augusta, Natural Science.
Joliet, Civil Engineering.
Poole, Edward Warren, "Electrical Eng'g.
Porter, Horace Chamberlain, "Classical.
Postlethwaite, Francis W. Henry, "Educational Eng'g.
Randall, Dwight T, "Mich."
Rayburn, Charles Clyde, "Mech. Eng'g.
Rheinlander, Albert William, "Chemistry.
Rhodes, Ora M, "Electrical Eng'g.
Sandford, Mrs. Eva Phillips, "Natural Science.
Shepardson, Ralph Steel, "Latin.
Sherrill, Walter Dickens, "Architecture.
Smith, Friend Orville, "Pharmacy.
Spencer, Fred Wilcox, "Architecture.
Steinwedell, George Otto, "Civil Engineering.
Terry, Charles Dutton, "Chemistry.
Thayer, Albert Lewis, "Mathematics.
Thompson, Susan Elizabeth, "Latin.
Trogdon, James Edmund, "Architecture.
Troth, William Voorhees, "Natural Science.
Vigal, William Myron, "Eng. and Mod. Lang.
Wallace, Herbert Milford, "Electrical Eng'g.
Webster, Sarah Emeline, "Civil Engineering.
Wheldon, Clarence Sheldon, "Natural Science.
Willett, William Marble, "Engineering.
Wills, Oscar T, "Architecture.
Wray, David Couden, "Electrical Eng'g.
Young, Charles Whittier, "Mechanical Eng'g.
Zilly, Mabel Helen, "Engineering.
Zimmerman, Walter, "Mathematics.

SOPHOMORES

Aaron, Philip Judy, "Electrical Eng'g.
Allen, Lewis Richard, "Mechanical Eng'g.
Anderson, Clark Godfrey, "Civil Engineering.
Arnold, Jay Jennings, "Natural Science.
Beasley, D Edythe, "Eng. and Mod. Lang.
Beatty, John Wirts, "Architecture.
Beem, Fred Clarkson, "Chemistry.
Berry, Erwin Howard, "Mathematics.
Bigelow, Mary C,
List of Students

Bocock, Clarence Edgar,
Boggs, Oliver Carter,
Booker, Lucile Alice,
Breidert, Henry Cyrille,
Brockway, Edwin Ladue,
Brode, Luther David,
Burkland, Theodore Leonard,
Campbell, Maude Permill
Clark, Charles Albert,
Clark, Charles Richard,
Clark, Winfred Newcomb,
Clayton, Thomas Wiley,
Collins, Edgar Francis,
Cooper, Edgar Cook,
Corbus, Burton Robison,
Craig, Wallace,
Crathorne, Arthur R,
Davison, Chester Morton,
*Deeming, Percy Corbus,
Dickey, James Harvey,
Dillon, William Wagner,
Doney, Oliver Kinsey,
DuBois, Alexander Dawes,
Dunaway, Arthur Newton,
Dunkin, William Van,
Eckles, Harry Edward,
Enochs, Claude Douglass,
Enochs, Delbert Riner,
Everhart, Rollin Orlando,
Fetzer, William Ray,
Fisher, Pearl,
Flanigan, Edwin Clark,
Fox, Fred Gates,
Frazey, Alice Belle,
Fullenwider, Arthur Edwin,
Fulton, William John,

* Deceased.

Bradford, Eng. and Mod. Lang.
Urbana, Latin.
Champaign, Eng. and Mod. Lang.
Havana, Civil Engineering.
Macomb, Mechanical Eng'g.
Urbana, Mechanical Eng'g.
Moline, Civil Engineering.
Champaign, Art and Design.
Vandalia, Electrical Eng'g.
Champaign, Architecture.
Paxton, Electrical Eng'g.
Dixon, Civil Engineering.
Champaign, Electrical Eng'g.
Mendota, Civil Engineering.
La Salle, Natural Science.
Chicago, Natural Science.
Champaign, Electrical Eng'g.
Rock Falls, Architecture.
Amboy, Architectural Eng'g.
Urbana, Mathematics.
Sheldon, Eng. and Mod. Lang.
Urbana, Classical.
Springfield, Electrical Eng'g.
Ottawa, Civil Engineering.
Urbana, Mathematics.
New Castle, Pa., Civil Engineering.
Champaign, Electrical Eng'g.
Champaign, Classical.
Clinton, Classical.
Ottawa, Eng. and Mod. Lang.
Savoy, Eng. and Mod. Lang.
Champaign, Architecture.
Peru, Philosophy.
Urbana, Eng'g and Mod. Lang.
Mechanicsburg, Architecture.
Hartford City, Ind., Eng. and Mod. Lang.
Golden, Electrical Eng'g.
Chicago, Eng. and Mod. Lang.
Colburn, Ind., Municipal Eng'g.
Gerber, Winfred Dean, Rockford, Civil Engineering.
Goodridge, Henry Anthony, Chicago, Electrical Eng’g.
Graham, George Woods, Freeport, Civil Engineering.
Gray, Shirley Eugene, Griggsville, Chemistry.
Greene, Mary Avery, Urbana, Classical.
Hair, Charles Ernest, Galesburg, Architecture.
Hamm, Ira Lewis, El Paso, Mechanical Eng’g.
Hatch, Thomas Milford, Goshen, Ind., Electrical Eng’g.
Hays, Don, Sidney, Civil Engineering.
Herwig, John Newton, Mason City, Mechanical Eng’g.
Hill, Irwyn Horatio, Joliet, Architecture.
Holcomb, Arthur Hiram, Sycamore, Mechanical Eng’g.
Hotchkiss, Robert James, Peoria, Architecture.
House, Leone Pearl, Sadorus, Latin.
Hudson, Isaac Beasly, Cairo, Latin.
Hughes, Arlington H, Mattoon, Latin.
Hughes, Emma Edna, Adams, Natural Science.
Hurd, Arthur Burton, El Paso, Electrical Eng’g.
Illingworth, Frank, Chicago, Civil Engineering.
Jackson, William John, Chicago, Civil Engineering.
Jordan, Helen, Tolono, Latin.
Kendall, James Blaine, Momence, Mechanical Eng’g.
Kingman, Charles Dudley, Mattoon, Civil Engineering.
Knorr, Carl Wolfsohn, Chicago, Electrical Eng’g.
Kuehne, Carl Oscar, Chicago, Architecture.
Kyle, Martha Jackson, Urbana, Latin.
Lentz, Caroline, Arcola, Latin.
Lindsay, Blanche, Onarga, Eng. and Mod Lang.
Linn, Francis David, Byron, Agriculture.
Linzee, Albert Carl, Du Quoin, Electrical Eng’g.
McCarty, Charles James, Rock Falls, Classical.
Marshutz, Joseph Hunter, Champaign, Electrical Eng’g.
May, Harry Monroe, Rochelle, Electrical Eng’g.
Mellen, Ernest Roy, Amboy, Electrical Eng’g.
Merker, Henry Fleury, Belleville, Mechanical Eng’g.
Mesiroff, Josef, Chicago, Natural Science.
Mitchell, Frederick Alexander, Hillsboro, Mechanical Eng’g.
Morrow, Grace Eliot, Champaign,
Nelson, Fred Irwin, Buda,
Neureuther, Andrew Henry, Peru, Mechanical Eng’g.
Nevins, John, Camp Point, Architecture.
von Oven, Frederick William, Naperville, Civil Engineering.
Owens, Dasie Margaret, Urbana, Natural Science.
Paul, Elmer Christian, Peoria, Chemistry.
Pease, Henry Mark, Malta, Electrical Eng’g.
Philips, Thomas Lewis, Mt. Carroll, Eng. and Mod. Lang.
Plym, Francis John, Aledo, Architecture.
Polk, Cicero Justice, Arcola, Latin.
Ponzer, Ernest William, Henry, Mechanical Eng’g.
Posey, Thomas, Peoria, Chemistry.
Reat, Fred Lee, Tuscola, Latin.
Ritchie, Andrew, Foosland, Civil Engineering.
Ross, Herbert Austin, Jerseyville, Architectural Eng’g.
Saunders, Rome Clark, Champaign, Electrical Eng’g.
Schneiter, Samuel, Paxton, Latin.
Shless, Charles Louis, Chicago, Philosophy.
Smith, Bruce, Newman, Latin.
Smith, Elmer Church, Columbus, Neb., Civil Engineering.
Soper, Stanley Livingston, Champaign, Latin.
Staley, Joseph Clarence, Urbana, Classical.
Stone, Albert James, Quincy, Mechanical Eng’g.
Stoolman, Almond Winfield Scott, Champaign, Natural Science.
Strawn, John Harris, Albion, Classical.
Sunderland, Archer Henry, Delavan, Electrical Eng’g.
Thompson, Guy Andrew, Steward, Eng. and Mod. Lang.
Toenniges, Ferd. Fred’k Emil, Davenport, la., Civil Engineering.
Van Horn, Merton Gates, Plainfield, Agriculture.
Van Meter, Seymour, Cantrall, Architecture.
Walker, Rufus, Jr., Moline, Eng. and Mod. Lang.
Walter, Charles Albert, Sandwich, Chemistry.
Webster, Joshua Percy, Philadelphia, Pa., Arch. Eng’g.
West, Roy Charles, Sycamore, Pharmacy.
Wetzel, Clyde Leigh, Traer, la., Electrical Eng’g.
Wharf, Allison James, Olney, Civil Engineering.
Williamson, Albert St. John, Quincy, Mechanical Eng’g.
Wilson, Frederick Henry, Evanston, Electrical Eng’g.
Wingard, Lewis Forney, Champaign, Eng. and Mod. Lang.
Winter, Julia Flora, Urbana, Philosophy.
Wolcott, James Thompson, Peoria, Chemistry.
Woodworth, Minnie Barney, Champaign, Eng. and Mod. Lang.

U—17.
<table>
<thead>
<tr>
<th>Name</th>
<th>City, State</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woody, Frederick Way</td>
<td>Champaign, IL</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Wuerffel, Herman Louis</td>
<td>Chicago, IL</td>
<td>Electrical Eng'g.</td>
</tr>
<tr>
<td>Zink, George L</td>
<td>Litchfield, MO</td>
<td>Chemistry</td>
</tr>
</tbody>
</table>

FRESHMEN

<table>
<thead>
<tr>
<th>Name</th>
<th>City, State</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adolph, Peter</td>
<td>San Jose, CA</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Anderson, Harry</td>
<td>Sheldon, NY</td>
<td>Electrical Eng'g.</td>
</tr>
<tr>
<td>Armstrong, Cecil Everett</td>
<td>Champaign, IL</td>
<td>Pharmacy</td>
</tr>
<tr>
<td>Armstrong, Frank Hall</td>
<td>Serena, NY</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Arps, George Frederick</td>
<td>Cary, NC</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Barnickol, Adolph</td>
<td>Belleville, MO</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Barton, Walter Franklin</td>
<td>Homer, MO</td>
<td>Architecture</td>
</tr>
<tr>
<td>Baxter, Charles Parker</td>
<td>Taylorville, MO</td>
<td>Electrical Eng'g.</td>
</tr>
<tr>
<td>Beach, Wilfred Warren</td>
<td>Sioux City, IA.</td>
<td>Architecture</td>
</tr>
<tr>
<td>Beckerleg, Gwawas Foster</td>
<td>Chicago, IL</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Beekman, Jonathan Colby</td>
<td>Petersburg, NC</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Benham, Cassius Earl</td>
<td>LaGrange, IN</td>
<td>Electrical Eng.</td>
</tr>
<tr>
<td>Bennett, Jay S</td>
<td>Paw Paw, MI</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Bennett, Ralph</td>
<td>Chicago, IL</td>
<td>Electrical Eng'g.</td>
</tr>
<tr>
<td>Bennett, Ruth</td>
<td>Chicago, IL</td>
<td>Architecture</td>
</tr>
<tr>
<td>Biebinger, Isaac Newton</td>
<td>Milmine, IL</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Bierce, Fred Nelson</td>
<td>Dayton, OH</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Bishop, George William</td>
<td>Urbana, IL</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Bixby, Alice Persis</td>
<td>Danville, IL</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Boggs, Arclissa Florence</td>
<td>Urbana, IL</td>
<td>Art and Design</td>
</tr>
<tr>
<td>Bonser, Frederick Gordon</td>
<td>Pana, IL</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Boyd, Edward Parkman</td>
<td>Aledo, IL</td>
<td>Architecture</td>
</tr>
<tr>
<td>Bradley, James Clifford</td>
<td>Morrison, IL</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Branch, Elizabeth</td>
<td>Champaign, IL</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Branch, James</td>
<td>Champaign, IL</td>
<td>Pharmacy</td>
</tr>
<tr>
<td>Bullard, Robert Irving</td>
<td>Mechanicsburg, NY</td>
<td>Eng. & Mod. Lang.</td>
</tr>
<tr>
<td>Burroughs, Elmer</td>
<td>Savoy, NY</td>
<td>Electrical Eng'g.</td>
</tr>
<tr>
<td>Busey, Charles Simpson</td>
<td>Urbana, IL</td>
<td>Electrical Eng'g.</td>
</tr>
<tr>
<td>Busey, Laura</td>
<td>Urbana, IL</td>
<td>Eng. and Mod. Lang.</td>
</tr>
<tr>
<td>Busey, Robert Oscar</td>
<td>Urbana, IL</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Bussey, Clyde George</td>
<td>Lanark, IL</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Byrne, Lee</td>
<td>Marshall, MN</td>
<td>Classical</td>
</tr>
<tr>
<td>Capron, Clyde</td>
<td>Marion, MN</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Carter, Henry Leslie</td>
<td>Girard, NY</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Chacy, Ezra Cline</td>
<td>Hillsboro, NC</td>
<td>Civil Engineering</td>
</tr>
</tbody>
</table>
Chipps, Halbert Lilly, Sullivan, Architecture.
Church, Frank Wilson, Chicago, Architecture.
Chuse, Harry Arthur, Mattoon, Mechanical Eng'g.
Clark, Edith, Vandalia, Classical.
Clark, Mary Edith, Champaign, Classical.
Clark, Philip Henry, Galena, Latin.
Clarkson, John Joseph, Chicago, Latin.
Clifford, Charles Luther, Serena, Electrical Eng'g.
Clinton, Edgar Marcellus, Polo, Eng. and Mod. Lang.
Conn, Ida May, Shelbyville, Eng. and Mod. Lang.
Craigmile, Esther Ann, Hinsdale, Latin.
Crissey, William Lewis, Roodhouse, Electrical Eng'g.
Curtis, Flora Elizabeth, Champaign, Eng. and Mod. Lang.
Dale, Elizabeth, Danville, Philosophy.
Defrees, Frederick Bradley, Indianapolis, Ind., Civil Eng'g.
Dill, William, Little Rock, Ark., Civil Eng'g.
Dillon, Roy Hodgson, Normal, Electrical Eng'g.
Dinwiddie, Virginia, Champaign, Natural Science.
Dixon, Hewitt Smith, Kankakee, Electrical Eng'g.
Dobbins, Donald Claude, Elliott, Eng. and Mod. Lang.
Dodds, George, Neoga, Electrical Eng'g.
Donaldson, Orville Louis, Charleston, Electrical Eng'g.
Dougherty, Andrew Jackson, Mound City, Electrical Eng'g.
Duncan, Clifford James, Lamoille, Electrical Eng'g.
Dunlap, William Helmle, Aledo, Electrical Eng'g.
Eagelston, Frank Wood, Bradford, Civil Engineering.
Eastman, Harry, Rock Island, Mechanical Eng'g.
Edwards, Frank Burch, Oneonta, N. Y., Architecture.
Ely, Howard Montgomery, Peoria, Mechanical Eng'g.
Ermeling, Willard Walter, Chicago, Electrical Eng'g.
Espenhain, Frank Christ., Jr., Belleville, Mechanical Eng'g.
Fairclo, George Cassius, Sycamore, Electrical Eng'g.
Fisher, Jacob G, Indianola, Chemistry.
Fithian, Sidney Breese, Newton, Eng. and Mod. Lang.
Fleager, Clarence Earl, Sheldon, Electrical Eng'g.
Flesch, Eugene William Penn, Chicago, Architectural Eng'g.
Forden, James Russell, Springfield, Mechanical Eng'g.
Foster, George Kenyon, Normal, Eng. and Mod. Lang.
Fowler, Robert Lambert, Charity, Civil Engineering.
Franklin, Irwin Chase,
Fraser, William Alexander,
Freeman, Harry Eben,
Gilchrist, Hugh McWhurr,
Ginzel, Rollin Francis,
Goodell, John,
Graham, Archie James,
Graham, Hugh Joseph,
Griffin, Walter B,
Griffith, George John,
Grimm, Fred,
Gunn, John C,
Halderman, Edwin McAfee,
Ham, Willard Earl,
Hanson, Rachelle Margaret,
Harris, Borden Baker,
Harris, Charles Lee,
Harrower, John Charles,
Hart, Sterling Perry,
Hatton, Edward Howard,
Hawley, William Albert,
Hay, Mark,
Hazlitt, Albert Nichols,
Helton, Alfred Joseph,
Henley, William Wheeler,
Herrick, Blanche Electa,
Higgins, Frank Leonard,
Hines, Edward George,
Hoagland, John C,
Honens, Hugh Benton,
Hopkins, Milton Irwin,
Hougham, Frank B,
Housel, Oscar Lloyd,
Hubbard, George Wallace,
Huber, Grace Emma,
Hughston, Allie Dellen,
Hunter, Collett Spencer,
James, William Henry,
Johnson, Alva Myron,
Johnson, Edwin Samuel,
Johnston, Jessie May,
Lexington,
La Salle,
Millington,
Gilchrist,
Trenton,
Chandlerville,
Gallipolis, O,
Springfield,
Elmhurst,
Savanna,
Canton,
Belleville,
Mt. Carroll,
Villa Grove,
Quincy,
Augusta,
Barrington,
Auburn,
Peru,
Dundee,
Champaign,
Ottawa,
Atwood,
Mattoon,
Farmer City,
Elmwood,
Huey,
Sheldon,
Milan,
Indianapolis, Ind.,
Belleflower,
Urbana,
Urbana,
Charleson,
Urbana,
Paris,
Urbana,
Decatur,
Sterling,
Hinsdale,
Electrical Eng’g.
Mechanical Eng’g.
Natural Science.
Electrical Eng’g.
Architecture.
Civil Engineering.
Natural Science.
Architectural Eng’g.
Eng. and Mod. Lang.
Civil Engineering.
Natural Science.
Farming Eng’g.
Natural Science.
Mechanical Eng’g.
Architecture.
Eng. and Mod. Lang.
Natural Science.
Pharmacy.
Elect. Eng’g.
Natural Science.
Electrical Eng’g.
Mechanical Eng’g.
Eng. and Mod. Lang.
Natural Science.
Agriculture.
Architecture.
Classical.
Civil Engineering.
Latin.
Jones, Louise,
Jutton; Emma Reed,
Kable, James Franklin,
Kaeser, Albert Fred,
Kennard, Edward Morrison,
Ketchum, Daniel Clement,
Kettenring, Henry Sylvester,
Koch, Fritz Conrad,
Kofoid, Nellie Ione,
Krahl, Benjamin Franklin,
Lake, George Elbert,
Lamet, Louis Harman,
Landel, Ida Susan,
Latzer, John Albert,
Lawrence, Carroll Gray,
Leach, William Blake,
Lee, Julian Liechaski,
Leutwiler, Oscar Adolph,
Lloyd, Clifford Luther,
Loftus, Ella,
Lott, Harvey Vansyckle,
McCormick, Elsie Dreene,
McCrory, Mary,
Marker, William Franklin,
Meharry, Jesse Erle,
Mercil, Benoni Edward,
Merrill, Stillwell Frederick,
Miner, Fred Graham,
Mitchell, Edwin Whitford,
Montgomery, Anne Beall,
Montgomery, Finis Ewing,
Moore, Dwight Merritt,
Munhall, Dola,
Naper, Herbert John,
Newell, Mason Harder,
Nichols, Bertha Vie,
Nichols, May Louise,
Nickoley, Edward Frederick,
Noterman, George,
O'Brien, Marguerite Helen,
Odell, Rena May,
Champaign, Eng. and Mod. Lang.
Champaign, Eng. and Mod. Lang.
Virden, Electrical Eng’g.
Highland, Natural Science.
Champaign, Eng. and Mod. Lang.
Champaign, Eng. and Mod. Lang.
Elmhurst, Eng. and Mod. Lang.
Normal, Natural Science.
Aurora, Civil Engineering.
Williamsville, Agriculture.
Warsaw, Civil Engineering.
Paxton, Eng. and Mod. Lang.
Highland, Agriculture.
Carbondale, Architectural Eng’g.
McLean, Eng. and Mod. Lang.
Memphis, Tenn., Mech. Eng’g.
Highland, Mechanical Eng’g.
Champaign, Natural Science.
Champaign, Eng. and Mod. Lang.
Elmwood, Pharmacy.
Champaign, Natural Science.
Charleston, Classical.
Champaign, Architecture.
Tolono, Eng. and Mod. Lang.
Chicago, Electrical Eng’g.
Collinsville, Chemistry.
Adair, Agriculture.
Round Grove, Agriculture.
Reynolds, Natural Science.
Charleston, Latin.
Monticello, Electrical Eng’g.
Champaign, Eng. and Mod. Lang.
Chicago, Architectural Eng’g.
Springfield, Latin.
Champaign, Eng. and Mod. Lang.
Beloit, Wis., Eng. and Mod. Lang.
Long Grove, Eng. and Mod. Lang.
Hillsboro, Civil Engineering.
Champaign, Eng. and Mod. Lang.
Morrison, Latin.
Omer, Lewis,
Owbridge, Lionel Herbert,
Owens, Wilkens Hoover,
Oxer, George Carl,
Paul, Wesley Arthur,
Payne, Ben,
Pixley, Arthur Homer,
Pope, Edna Marian,
Postel, Fred Jacob,
Predmore, Mahlon,
Railsback, Robert J,
Rapp, George Leslie,
Ray, Walter Thornton,
Raymond, Ruth Cleveland,
Reely, Ernest Ralph,
Ritchey, Felix,
Robbins, Walter,
Robinson, Phillip Sidney,
Rolfe, Martha Deette,
Schroeder, Arthur George,
Schutt, Walter Robert,
Schuyler, James Chauncey,
Scotten, Ernest Guy,
Sears, Will Everett,
Seely, Garret Teller,
Shamel, Archibald Dixon,
Sheean, Henry David,
Sheldon, Carl Edmonds,
Shumaker, Charles Clarence,
Smith, Charles Augustus,
Smith, Joseph Clay,
Smoot, Elma,
Spurgin, Isaac Meigs,
Staley, Maggie Edith,
Stern, Albert,
Storment, Edgar Lafayette,
Storment, Mrs. Mary Hill,
Sumner, William Thompson,
Summey, David Long,
Tait, Benjamin Franklin,
Taylor, Thomas Varence,

Clayton,
Springfield,
Champaign,
Macon,
Peoria,
Osborn,
Ingraham,
Du Quoin,
Mascoutah,
Avon,
Hopedale,
Carbondale,
Macon,
Sidney,
Spring Green, Wis.,
Cadwell,
Canton,
Aurora,
Urbana,
Chicago,
Belleville,
Sycamore,
Newman,
Rock Island,
Oswego,
Taylorville,
Galena,
Sterling,
Girard,
Mattoon,
Cairo,
Danville,
Urbana,
Urbana,
Champaign,
Salem,
Salem,
Emden,
Buffalo, N. Y.,
Macon,
Urbana,
Electrical Eng'g.
Architecture.
Natural Science.
Electrical Eng'g.
Mechanical Eng'g.
Eng. and Mod. Lang.
Eng. and Mod. Lang.
Electrical Eng'g.
Eng. and Mod. Lang.
Classical.
Architecture.
Eng. and Mod. Lang.
Eng. and Mod. Lang.
Architecture.
Eng. and Mod. Lang.
Civil Engineering.
Civil Engineering.
Electrical Eng'g.
Agriculture.
Latin.
Latin.
Electrical Eng'g.
Architecture.
Pharmacy.
Latin.
Eng. and Mod. Lang.
Eng. and Mod. Lang.
Classical.
Eng. and Mod. Lang.
List of Students

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tebbetts, George Edward</td>
<td>Chicago</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Temple, Harry Roberts</td>
<td>Elida</td>
<td>Architecture</td>
</tr>
<tr>
<td>Theiss, Otto John</td>
<td>Sublette</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Thompson, George Mershon</td>
<td>Benent</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Thompson, Loren Berthel</td>
<td>Virginia</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Tompkins, Samuel Justine</td>
<td>Jacksonvile</td>
<td>Electrical Eng'g</td>
</tr>
<tr>
<td>Trapp, Albert Rubby</td>
<td>Lincoln</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Trapp, Harold Frederick</td>
<td>Lincoln</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Trippeer, Allen G</td>
<td>Peru, Ind.</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Unzicker, William Luther</td>
<td>Hopedale</td>
<td>Classical</td>
</tr>
<tr>
<td>Uppendahl, William John</td>
<td>Dalton City</td>
<td>Eng. and Mod. Lang</td>
</tr>
<tr>
<td>Uthoff, Herman Conrad</td>
<td>Peru</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Vance, Cornelius Andrew</td>
<td>Elmwood</td>
<td>Architectural Eng'g</td>
</tr>
<tr>
<td>Vance, William Herbert</td>
<td>Edwardsville</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Vial, Alice Mildred</td>
<td>Western Springs</td>
<td>Eng. and M. Lang</td>
</tr>
<tr>
<td>Volk, Edmund</td>
<td>Mendota</td>
<td>Electrical Eng'g</td>
</tr>
<tr>
<td>Waldo, Marie L</td>
<td>Champaign</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Walker, Herbert William</td>
<td>Dundee</td>
<td>Electrical Eng'g</td>
</tr>
<tr>
<td>Walsh, James Tecumseh</td>
<td>Harvard</td>
<td>Eng. and Mod. Lang</td>
</tr>
<tr>
<td>Weaver, Ben: Perley</td>
<td>Urbana</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Webber, Jonathan Clay</td>
<td>Urbana</td>
<td>Pharmacy</td>
</tr>
<tr>
<td>Webster, William W</td>
<td>Urbana</td>
<td>Mechanical Eng'g</td>
</tr>
<tr>
<td>Weirick, Ralph Wilson</td>
<td>Washington</td>
<td>Architecture</td>
</tr>
<tr>
<td>Wernham, James Ingersoll</td>
<td>Marengo</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Western, Irving Mark</td>
<td>Dundee</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Whelpley, Cecilia</td>
<td>Cobden</td>
<td>Natural Science</td>
</tr>
<tr>
<td>White, Harry W</td>
<td>Newman</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Whitmeyer, Mark Hubert</td>
<td>Danville</td>
<td>Architecture</td>
</tr>
<tr>
<td>Willcox, Maurice Meacham</td>
<td>Elmore</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Wilmarth, George Henry</td>
<td>Aurora</td>
<td>Electrical Eng'g</td>
</tr>
<tr>
<td>Wilson, Frank De Witt</td>
<td>Loda</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Wilson, Theron Campbell</td>
<td>Champaign</td>
<td>Eng. and Mod. Lang</td>
</tr>
<tr>
<td>Woolsey, Lulu Catherine</td>
<td>Polo</td>
<td>Eng. and Mod. Lang</td>
</tr>
<tr>
<td>Yeomans, Edith Marian</td>
<td>Danville</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Young, Bertram Otho</td>
<td>Le Roy</td>
<td>Philosophy</td>
</tr>
</tbody>
</table>

Specials

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, Maud</td>
<td>Elgin</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Alarcó, Joseph Maria</td>
<td>Valencia, Spain</td>
<td>Electrical Eng'g</td>
</tr>
<tr>
<td>Alward, Grace Josephine</td>
<td>Canton</td>
<td>Music</td>
</tr>
<tr>
<td>Ayers, Lois Sigourney</td>
<td>Urbana</td>
<td>Art and Design</td>
</tr>
</tbody>
</table>
Barr, Joseph Martin,
Brode, Arletta Elizabeth,
Bronson, Nina Louisa,
Brower, Florence,
Brunson, Charles Morton,
Butler, Harry Charles,
Carter, Mabel Carrie,
Cary, Phoebe Katharyn,
Chester, Edith,
Crawford, Emma,
Davidson, Jessie Fuller,
Dennison, Charles Robert,
Draper, Charlotte Leland,
Dunlap, Helen Esther,
Eldridge, Nettie Robinson,
Fairchild, Oscar Harmon,
Finch, Winfield Scott,
Foote, Frank Holmes,
Gould, Guy Torrence, Jr.,
Grieme, Henry William,
Grinnell, Jessie Clare,
Hall, Lucia Knapp,
Halls, Frank Ernest,
Hanson, Mattie Alice,
Heath, Bessie Beatrice,
Hobbs, Lunda,
Ketchum, Mary Phronia,
Koenig, Adolph,
Leal, Grace,
Lee, Mary Deming,
Mather, Grace Ella,
Millar, Nellie Decker,
Moore, Lucy Kate,
Moore, Walter Ellsworth,
Nesbit, Mary Frances,
Niccols, Calvin Barnes,
Phillips, Theodore Clifford,
Pike, Curtis F,
Quirk, Elizabeth,
Raynor, Annie,
Reynolds, Elodia May,
Joliet,
Urbana,
Urbana,
Champaign,
Champaign,
Champaign,
Champaign,
Champaign,
Champaign,
Galesburg,
Hubbard, Ohio,
Urbana, Eng. and Mod. Lang.
Champaign, Art and Design.
Galva, Eng. and Mod. Lang.
Snyder, Chemistry.
Verona, Agriculture.
Macomb City, Miss., Civil Eng'g.
Chicago, Natural Science.
Amsterdam, N. Y., Architecture.
Mayfair, Art and Design.
East Lynn, Music.
Chicago, Architecture.
Urbana, Art and Design.
Champaign, Eng. and Mod. Lang.
Louisville, Eng. and Mod. Lang.
Champaign, Art and Design.
Hilltop, Kan., Architecture.
Urbana, Music.
Tiskilwa, Mathematics.
Joliet, Art and Design.
Mattoon, Art and Design.
Pesotum, Music.
Pesotum, Mechanical Eng'g.
Oakland, Natural Science.
New Lenox, Electrical Eng'g.
Mt. Carroll, Civil Engineering.
Normal, Natural Science.
Champaign, Music.
Champaign, Music.
Golden, Art and Design.
Rhoads, Emma May,
Riley, George Washington,
Ryan, Sara Agnes,
Sager, Ellen,
Sconce, Harvey James,
Seass, Samuel Lucas,
Sheldon, Eunice,
Skehan, Josephine,
Sperry, James Franklin,
Strauss, Edwin Nelson,
Swanson, August Frank,
Tarrant, William Henry,
Townsend, Edmund Dell,
Van Patten, Ida,
Weaver, Edith Maria,
Westall, Rosa May,
Wheeler, Walter Frank,
Williams, Lewis H,
Wright, Mrs. Maie,
Wright, Marion,
Wurdeman, Charles,

Champaign, Eng. and Mod. Lang.
Champaign, Art and Design.
Chicago, Latin.
Belvidere, Eng. and Mod. Lang.
Sidell, Agriculture.
Arthur, Philosophy.
Urbana, Art and Design.
Ocean Springs, Miss., Art, Design.
St. Louis, Mo., Mechanical Eng'g.
Peoria, Architecture.
Champaign, Civil Engineering.
Champaign, Pharmacy.
Steward, Art and Design.
Urbana, Eng. and Mod. Lang.
Sumner, Latin.
Quincy, Agriculture.
Chicago, Mechanical Eng'g.
Urbana, Music.
Urbana, Eng. and Mod. Lang.
Columbus, Neb., Architecture.

PREPARATORARY

Abdill, Harold Blakley,
Alberts, Henry William,
Ainsworth, William Pemberton,
Allen, Frank Gilbert,
Allen, Roy Skillman,
Appel, Henry Louis,
Arthur, John Geigar,
Baker, Horatio Webber,
Bartholemew, Ross,
Beal, John Franklin,
Black, Alice Mary,
Black, George McCall,
Black, Laura Louise,
Boice, Elmer Ulysses,
Bond, Dixon John,
Bonnell, Everett Shannon,
Boyd, Hobart Sherman,

Danville,
Emden, Eng. and Mod. Lang.
Champaign, Natural Science.
Rock Island, Electrical Eng'g.
Harristown, Electrical Eng'g.
Chicago, Architectural Eng'g.
Aledo, Eng. and Mod. Lang.
Champaign, Mechanical Eng'g.
Vermont, Electrical Eng'g.
Mt. Vernon, Natural Science.
Sadorus, Eng. and Mod. Lang.
Canton, Electrical Eng'g.
Sadorus, Eng. and Mod. Lang.
Buckley, Electrical Eng'g.
Champaign, Electrical Eng'g.
Lamoille, Electrical Eng'g.
Lewistown, Eng. and Mod. Lang.
Byerly, Edna Gertrude, Urbana, Latin.
Cabeen, Fred Earl, Architecture.
Cabeen, Joshua Dale, Aledo, ElectricalEng'g.
Campbell, Ashton Ellsworth, Champaign, Classical.
Carson, Frank, Urbana, Eng. and Mod. Lang.
Churchill, Della Almon, Kinderhook, Electrical Eng'g.
Clark, Howard Wallace, Quincy, Architecture.
Coey, Robert Hill, Chicago, Mechanical Eng'g.
Collins, Guy Richard, Champaign, Mechanical Eng'g.
Conner, Lawrence Beatty, Pana, Natural Science.
Cowell, Forrest M, Elwood, Mechanical Eng'g.
Cox, Edna Leone, Vermont, Eng. and Mod. Lang.
Crane, Zaide Varney, Champaign, Natural Science.
Dobbins, Ethel Irene, Ipava, Eng. and Mod. Lang.
Dolan, William John, Ohio, Philosophy.
Draper, Charlotte Enid, Urbana, Eng. and Mod. Lang.
Dunlop, Archibald Bard, Dwight, Eng. and Mod. Lang.
Ege, John Frank, Cordova, Natural Science.
Eignus, William Trumbo, Forrest, Natural Science.
Ellsworth, William Beverly, Deer Park, Civil Engineering.
Evans, Waldo Carl, Danville, Eng. and Mod. Lang.
Everett, Wirt, Chicago, Electrical Eng'g.
Farrelly, James Walter, Dawn, Mechanical Eng'g.
Flickinger, John Franklin, Lanark, Electrical Engineering.
Foohy, Thomas James, Ivesdale, Classical.
Foster, William Grant, Urbana, Classical.
French, Cora May, East Lynn, Eng. and Mod. Lang.
Gell, John James, Gilchrist, Natural Science.
Gerald, Charles Peter, Champaign, Civil Engineering.
Green, Frances Myrtle, Urbana, Eng. and Mod. Lang.
Green, Josephine Maxwell, Ramsey, Music.
Green, Mae Frances, Ivesdale, Eng. and Mod. Lang.
Griffin, William Ralph, Argenta, Eng. and Mod. Lang.
Griffiths, John, Jr., Chicago, Civil Engineering.
Grigsby, Will Herman, Blandinsville, Eng. and M. Lang.
Griswold, Lewis Edwin, Blue Mound, Chemistry.
Grossman, Nathan, Lanark, Electrical Eng'g.
Gunder, Nell Blanche, Homer, Eng. and Mod. Lang.
Hallam, John Carter, Centralia, Natural Science.
LIST OF STUDENTS

Hannan, John Edward,
Hanson, Gertrude Lucile,
Harris, William Marks,
Hartrick, Dinchen Clara,
Hartrick, Nancy Emma,
Hartrick, Louis Eugene,
Haussner, Charles, Jr.,
Heath, Noble Porter,
Hedges, Charles Wilbur,
Higgins, Alice A,
Hodges, James Stewart,
Hogans, Corban Bane,
Hollerich, Cornelius Nicholas,
Hulsebus, Bernhard Lubertus
Husk, Friederick William,
Huston, Frank Derz,
Ijams, Catherine Harriet,
Ireton, Philip Anthony,
Irwin, Claude Garrison,
Jungerich, Charles Rider,
Jacobson, Charles Herman,
Kenney, Charles Francis,
Ketchum, George Spencer,
Kincaid, Charles Howard,
Knox, William Forest,
Kuhn, Leopold,
Latzer, Jennie Mary,
Laugman, John Oscar,
LeFevre, George Winans,
Lewis, Stanley Melville,
Lietze, Frank,
Loeb, Oscar,
McCollum, Harvey Darling,
McLean, Elmer Lyman,
McLean, George Harvey,
Mack, John Michael,
Mahon, Thomas Francis,
Mathews, Clyde Milton,
Mautz, Edmund Jacob,
Maxwell, Charles Edward,
Meeks, Arthur Francis,

Champaign, Classical.
 Urbana, Classical.
 Princeton, Latin.
 Urbana, Eng. and Mod. Lang.
 Urbana, Eng. and Mod. Lang.
 Urbana, Eng. and Mod. Lang.
 Chicago, Mechanical Eng'g.
 Champaign, Agriculture.
 Urbana, Pharmacy.
 Perry, Classical.
 Denrock, Civil Engineering.
 Browning, Eng. and Mod. Lang.
 Spring Valley, Pharmacy.
 Saxon, Ia., Architecture.
 Shabbona, Electrical Eng'g.
 Virden, Mechanical Eng'g.
 Urbana, Natural Science.
 New Richmond, O., Nat. Science.
 Long View, Eng. and Mod. Lang.
 Urbana, Natural Science.
 Englewood, Civil Engineering.
 Divernon, Chemistry.
 Champaign, Civil Engineering.
 Champaign, Natural Science.
 Peoria, Natural Science.
 Champaign, Electrical Eng'g.
 Highland, Natural Science.
 Lisbon, Natural Science.
 Fithian, Civil Engineering.
 Urbana, Architecture.
 Carlyle, Architecture.
 Urbana, Eng. and Mod. Lang.
 Louisville, Eng. and Mod. Lang.
 Lombardville, Electrical Eng'g.
 Normal, Agriculture.
 Viola, Electrical Eng'g.
 New York, N. Y., Mech. Eng'g.
 Urbana, Eng. and Mod. Lang.
 Stewardson, Natural Science.
 Odell, Pharmacy.
 Farina, Natural Science.
Mesler, John Dickinson, Mechanical Eng'g.
Monier, Martha Vivian, Henry, Classical.
Monroe, John, Dallas, Tex., Eng. and Mod. Lang.
Moorhead, Alfred Lee, St. Louis, Mo., Architecture.
Mundy, Robert Stephen, Champaign, Electrical Eng'g.
Nabstedt, Frederick, Davenport, Ia., Electrical Eng'g.
Noble, Ernest Henry, Brocton, Classical.
Osgood, Simon Milford, Marseilles, Civil Engineering.
Parker, Clay Dean, Dwight, Latin.
Peddicord, Jessie Mae, Champaign, Natural Science.
Perry, John Nevin, Malden, Electrical Eng'g.
Phipps, Josie Mae, Eugene, Ind., Eng. and Mod. Lang.
Pollard, Earle Royal, Centralia, Mechanical Eng'g.
Pope, Howard Blake, Du Quoin, Natural Science.
Post, Cora Mabel, Fithian, Classical.
Radebaugh, Stella May, Rippey, Ia., Classical.
Raymond, John Eaton, Sidney, Agriculture.
Replogle, William Harry, Champaign, Electrical Eng'g.
Rhoads, Horace Adam, Champaign, Eng. and Mod. Lang.
Rhodes, Edward Melvin, Bloomington, Natural Science.
Roberts, Burt William, Magnolia, Eng. and Mod. Lang.
Roche, Edward Francis, Rock Island, Architecture.
Ryder, Gaylord C, Monticello, Electrical Eng'g.
Sheean, Frank Thomas, Galena, Latin.
Shuler, Hugh McWhurr, Gilchrist, Civil Engineering.
Smedley, Ralph Chestnut, Waverly, Eng. and Mod. Lang.
Sparks, Annie Elnora, Urbana, Classical.
Stanton, Burt Tompkins, Chicago, Mechanical Eng'g.
Stedman, Alfred Bennett, Champaign, Electrical Eng'g.
Stern, Walter Wolf, Champaign, Electrical Eng'g.
Stotley, Emma Maria, Champaign, Eng. and Mod. Lang.
Stotley, Jennie Florence, Campaign, Eng. and Mod. Lang.
Studer, Joseph Valentine, Peoria, Natural Science.
Tabaka, Albert James, Ivesdale, Natural Science.
Thompson, Risty Melroy, Mt. Erie, Mechanical Eng'g.
Thornton, Robert Ingersoll, Magnolia, Civil Engineering.
Trevett, Helen Mary, Champaign, Eng. and Mod. Lang.
Trevett, John Howard, Champaign, Natural Science.
Twyman, Frank A, Macomb, Architecture.
Van Brundt, Chester, Champaign, Natural Science.
<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wain, Albert</td>
<td>Chicago</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Wait, Ernest Ludden</td>
<td>Urbana</td>
<td>Architecture</td>
</tr>
<tr>
<td>Webber, Arthur</td>
<td>Galatia</td>
<td>Eng. and Mod. Lang.</td>
</tr>
<tr>
<td>West, Edward J</td>
<td>Muncie</td>
<td>Natural Science</td>
</tr>
<tr>
<td>Wham, Anna Gertrude</td>
<td>Foxville</td>
<td>Natural Science</td>
</tr>
<tr>
<td>White, Edna Noble</td>
<td>Fairmont</td>
<td></td>
</tr>
<tr>
<td>White, Leila</td>
<td>Fairmont</td>
<td></td>
</tr>
<tr>
<td>Wiley, Raymond Sly</td>
<td>Seymour</td>
<td>Latin</td>
</tr>
<tr>
<td>Wilson, Harry</td>
<td>Guthrie</td>
<td>Mechanical Eng'g.</td>
</tr>
<tr>
<td>Wright, Edith</td>
<td>Urbana</td>
<td>Eng. and Mod Lang.</td>
</tr>
<tr>
<td>Zilly. Fred McKinley</td>
<td>Champaign</td>
<td>Pharmacy</td>
</tr>
</tbody>
</table>

SUMMER SCHOOL—1895

<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, Alfred C</td>
<td></td>
<td>Aledo</td>
</tr>
<tr>
<td>Bassett, Victor Hugo</td>
<td></td>
<td>Urbana.</td>
</tr>
<tr>
<td>Boggs, Lucile Pearl</td>
<td></td>
<td>Urbana.</td>
</tr>
<tr>
<td>Boggs, Oliver Carter</td>
<td></td>
<td>Lanham, Maryland.</td>
</tr>
<tr>
<td>Brewer, Martha Maria</td>
<td></td>
<td>Champaign.</td>
</tr>
<tr>
<td>Clark, Cyril Balfour</td>
<td></td>
<td>Polo.</td>
</tr>
<tr>
<td>Clinton, Eva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culp, Flora C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunlap, Alice I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garber, John Frederick</td>
<td></td>
<td>Brighton.</td>
</tr>
<tr>
<td>Graff, Mamie Elizabeth</td>
<td></td>
<td>Greenville.</td>
</tr>
<tr>
<td>Harry, Stephen Arnold Douglas</td>
<td></td>
<td>Danville.</td>
</tr>
<tr>
<td>Huber, Cecilia</td>
<td></td>
<td>Highland.</td>
</tr>
<tr>
<td>Knight, Robert Franklin</td>
<td></td>
<td>Wichita, Kas.</td>
</tr>
<tr>
<td>Kyle, Mrs. Manella</td>
<td></td>
<td>Canton.</td>
</tr>
<tr>
<td>Leal, Rose</td>
<td></td>
<td>Urbana.</td>
</tr>
<tr>
<td>Linder, Grace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McIntosh, Charles M</td>
<td></td>
<td>Bement.</td>
</tr>
<tr>
<td>Magers, Samuel Dennis</td>
<td></td>
<td>Houston, Texas.</td>
</tr>
<tr>
<td>Martin, John Madison</td>
<td></td>
<td>Bement.</td>
</tr>
<tr>
<td>Moore, George Henderson</td>
<td></td>
<td>Vermilion Grove.</td>
</tr>
<tr>
<td>Myers, James William</td>
<td></td>
<td>Chrisman.</td>
</tr>
<tr>
<td>Power, Margaret C</td>
<td></td>
<td>Weston.</td>
</tr>
<tr>
<td>Tschudy, Ida Martha</td>
<td></td>
<td>Highland.</td>
</tr>
<tr>
<td>Vetterliet, Anna S</td>
<td></td>
<td>Decatur.</td>
</tr>
<tr>
<td>Williamson, Albert St. John</td>
<td></td>
<td>Quincy.</td>
</tr>
</tbody>
</table>
WINTER SCHOOL IN AGRICULTURE—1896

Bronson, Ernest Roscoe, Urbana.
Calvin, Evart, Huntsville.
Center, Ralph A, Ottawa.
Conaut, Lewis Philbrook, Plainfield.
Funk, Carl A, Exeter.
Goodnow, Fred Clinton, Salem.
Harrison, William Cullen, Parkville.
Haskell, Fritz Law, Exeter.
Howell, Carrie Barnes, Champaign.
Kelly, Charles Gideon, Ottawa.
Leland, Jerome Aaron, Springfield.
Luehm, Albert John, Highland.
McKee, Eli Earl, Rising.
Miller, Alvin George, Urbana.
Monroe, Joshua Wales, Plainfield.
O'Brien, Will, Groveland.
Willett, Charles Edgar, Eberle.
Wood, Leonidas Allerton, Sublette.

SUMMARY OF STUDENTS—1895-96

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate School</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Resident Graduates</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Seniors</td>
<td>86</td>
<td>17</td>
<td>103</td>
</tr>
<tr>
<td>Juniors</td>
<td>89</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>Sophomores</td>
<td>117</td>
<td>16</td>
<td>133</td>
</tr>
<tr>
<td>Freshmen</td>
<td>191</td>
<td>43</td>
<td>234</td>
</tr>
<tr>
<td>Specials</td>
<td>27</td>
<td>39</td>
<td>66</td>
</tr>
<tr>
<td>Total in University</td>
<td>526</td>
<td>138</td>
<td>664</td>
</tr>
<tr>
<td>Preparatory School</td>
<td>119</td>
<td>32</td>
<td>151</td>
</tr>
<tr>
<td>Summer School, 1895</td>
<td>14</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>Winter School in Agriculture, 1896</td>
<td>17</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>676</td>
<td>184</td>
<td>860</td>
</tr>
<tr>
<td>Deduct counted twice</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>672</td>
<td>183</td>
<td>855</td>
</tr>
</tbody>
</table>
HOLDERS OF SCHOLARSHIPS, PRIZES, AND COMMISSIONS

HONORARY SCHOLARSHIPS

<table>
<thead>
<tr>
<th>Adams,</th>
<th>Steinwedell, George O.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carroll,</td>
<td>Carpenter, Hubert V.</td>
</tr>
<tr>
<td>Champaign,</td>
<td>Marble, Harry C.</td>
</tr>
<tr>
<td>Clinton,</td>
<td>Webster, Sarah E.</td>
</tr>
<tr>
<td>Coles,</td>
<td>Millar, Adam V.</td>
</tr>
<tr>
<td>Cook,</td>
<td>Bailey, Leonard L.</td>
</tr>
<tr>
<td>Du Page,</td>
<td>von Oven, Frederick W.</td>
</tr>
<tr>
<td>Edwards,</td>
<td>Strawn, John H.</td>
</tr>
<tr>
<td>Hancock,</td>
<td>Ketchum, Richard B.</td>
</tr>
<tr>
<td>Iroquois,</td>
<td>Dillon, William W.</td>
</tr>
<tr>
<td>Jackson,</td>
<td>Allen, Lewis Richard.</td>
</tr>
<tr>
<td>Jefferson,</td>
<td>Webber, Hubert A.</td>
</tr>
<tr>
<td>Kendall,</td>
<td>Seely, Garret T.</td>
</tr>
<tr>
<td>La Salle,</td>
<td>Clifford, Charles L.</td>
</tr>
<tr>
<td>Marion,</td>
<td>Row, George S.</td>
</tr>
<tr>
<td>Marshall,</td>
<td>Ponzer, Ernest W.</td>
</tr>
<tr>
<td>Pulaski,</td>
<td>Dougherty, Andrew J.</td>
</tr>
<tr>
<td>Rock Island,</td>
<td>Schacht, Frederick W.</td>
</tr>
<tr>
<td>Sangamon,</td>
<td>Porter, Robert K.</td>
</tr>
<tr>
<td>Stark,</td>
<td>Eagleston, Frank W.</td>
</tr>
<tr>
<td>Tazewell,</td>
<td>Van Orstrand, Charles E.</td>
</tr>
<tr>
<td>Whiteside,</td>
<td>Bradley, James C.</td>
</tr>
<tr>
<td>Will,</td>
<td>Barr, George A.</td>
</tr>
<tr>
<td>Williamson,</td>
<td>Capron, Clyde.</td>
</tr>
<tr>
<td>Winnebago,</td>
<td>Temple, Harry E.</td>
</tr>
<tr>
<td>Woodford.</td>
<td>Ray, Walter T.</td>
</tr>
</tbody>
</table>
ACCREDITED SCHOOL SCHOLARSHIPS

Aurora High School, Krahl, Benjamin F.
Camp Point High School, Nevins, John.
Galena High School, Pooley, William V.
Mattoon High School, Henley, William W.
Paxton High School, Clark, Winfred N.
Urbana High School, Staley, Joseph C.

CHICAGO CLUB LOAN FUND

Mesiroff, Joseph. Shless, Charles L.

WINNER OF THE HAZLETON PRIZE MEDAL

Cadet Corporal Milton I. Hopkins.

ROSTER OF OFFICERS AND NON-COMMISSIONED OFFICERS, BATTALION OF THE UNIVERSITY OF ILLINOIS

Major, F. H. Green.
First Lieutenant and Adjutant, H. C. Porter.
Sergeant Major, A. D. DuBois.
Band Leader, W. L. Steele.
Drum Major, H. F. Merker.

Battery—First Lieutenant, G. F. Anderson; First Sergeant, H. M. May; Sergeant, C. A. Clark; Corporals, I. M. Western, E. G. Hines, C. Capron.

<table>
<thead>
<tr>
<th>1896</th>
<th>1897</th>
<th>1897</th>
<th>1897</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPTEMBER</td>
<td>JANUARY</td>
<td>MAY</td>
<td>SEPTEMBER</td>
</tr>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCTOBER</td>
<td>FEBRUARY</td>
<td>JUNE</td>
<td>OCTOBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOVEMBER</td>
<td>MARCH</td>
<td>JULY</td>
<td>NOVEMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECEMBER</td>
<td>APRIL</td>
<td>AUGUST</td>
<td>DECEMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18—U
THE UNIVERSITY CALENDAR

1896–97

FALL TERM—1896

Sept. 3, Thursday,
Sept. 7, 8, Monday and Tuesday.
Sept. 9, Wednesday.
Nov. 2, Monday.
Nov. 26, Thursday.
Nov. 30, Monday.
Dec. 16, Wednesday.
Dec. 18, Friday.

Entrance Examinations begin.
Registration Days.
Instruction begins.
Latest date for announcing Subjects of Theses.
Thanksgiving Recess.
Instruction resumed.
Term Examinations begin.
Term ends.

WINTER TERM—1897

Jan. 4, Monday.
Jan. 4, 5, Monday and Tuesday.
Jan. 6, Wednesday.
Feb. 24, Monday.
March 22, Monday.
March 24, Wednesday.

Entrance Examinations.
Registration Days.
Instruction begins.
Prize Debate.
Instruction begins.
Term Examinations begin.
Term Ends.

SPRING TERM—1897

March 30, Tuesday.
March 31, Wednesday.
May 13, 14, Thursday and Friday.
May 14, Friday.
May 15, Saturday.
May 24, Monday.
May 25, Tuesday.
June 1, Tuesday.

Registration Day.
Instruction begins.
University High School Conference.
Interscholastic Oratorical Contest.
Interscholastic Athletic meet.
Hazleton Prize Drill.
Competitive Drill.
Latest Day for Acceptance of These.
CALENDAR

June 2, Wednesday. Term Examinations begin.
June 6, Sunday. Baccalaureate Address.
June 7, Monday. Class Day.
June 8, Tuesday. Alumni Day and Oratorical Contest.
June 9, Wednesday. Twenty-sixth Annual Commencement.

FALL TERM—1897

Sept. 2, Thursday. Entrance Examinations begin.
Sept. 6, 7, Monday and Tuesday. Registration Days.
Sept. 8, Wednesday. Instruction begins.
Nov. 1, Monday. Latest date for announcing Subjects of Theses.
Nov. 25, Thursday. Thanksgiving Recess.
Nov. 29, Monday. Instruction resumed.
Dec. 15, Wednesday. Term Examinations begin.
Dec. 17, Friday. Term ends.
INDEX

Accredited High Schools, 86, 280.
Administration, officers of, 18; of the University, 44; council of, 48.
Admission to University, by certificate, 35; by examination, 36; by transfer of credits, 41; as special students, 41; to advanced standing, 42; to preparatory school, 241. See also Examinations.
Agricultural Experiment Station, Board of Direction of, 14; staff, 21.
Agriculture, College of, 45, 117; courses in, 129; equipment of, 119; faculty of, 117; instruction, 118.
Agriculture, winter school in, 122.
Algebra. See Mathematics.
Anglo-Saxon. See English, courses in.
Anthropology, 138.
Anthropometry, 138.
Architectural Engineering, 69.
Architecture, courses in, 67, 133, 141; description of department, 66; equipment, 67; graduation in, 67.
Architects' Club, 225.
Art and Design, courses in, 142; description of department, 54.
Art Gallery, 28.
Astronomy, courses in, 148; for admission, 88.
Bacteriology, 145, 147, 148, 193.
Beneficiary Aid, 224.
Bibliography and Library Economy, 145.
Biological Experimental Station, 50, 101.
Biology, 145.
Board, 289.
Board of Trustees, 11.
Botany, courses in, 146; description of department, 107; for entrance, 38; equipment, 107; in preparatory school, 244.
Calendar, 274.
Certificate, see Admission and County Superintendents.
Chemical Group, 86.
Chemistry, Applied, and Engineering, 90; courses in, 147; description of department, 95; graduation in, 89.
Chicago Club Loan Fund, 272.
Chicago College of Pharmacy, see Pharmacy, School of.
Christian Associations, 225.
Civil Engineering, 70; courses in, 154; equipment, 71; graduation in, 71.
Class of 1895 Loan Fund, 272.
Clubs, auxiliary to courses of study, 225; boarding, 239. See also Societies.
Collections, 31.
College of Agriculture, 117; admission, 85, 40; graduation, 121.
College of Engineering, 45, 63; admission, 85, 39; departments, 66; graduation, 67, 69, 71, 74, 77, 79.
College of Literature and Arts, 45; admission, 85, 38; departments, 54; graduation, 52.
College of science, 88; admission, 35, 40; departments, 85, 107, 114; graduation, 85, 90, 108, 114.
Commissions, holders of, 272.
Concerts, 228.
Council of Administration, 48.
County Superintendents' Certificates, 242.
Course System, 49, 52.
Courses, General Description of, 129. In preparatory school, 242.
Danish, see English, Course for Graduates.
Degrees, first, 126, 128, 216; second, 217; doctor's, 218. See also Requirements for Graduation.
Descriptive Geometry. See Drawing, Engineering.
Doctor's Degree, 218.
Drawing, for admission, 39; courses in Engineering, 159; free-hand, 142; in preparatory school, 244.
Economics, courses in, 161; description of department, 55, 114.
Electrical Engineering, 72, 164.
Engineering, Applied Chemistry and, 90.
Engineering, College of, 45, 63; courses in, 188, 148, 154, 159, 164, 188, 188, 192; departments of, 63, 69, 72, 75, 78.
Engineering Hall, 27.
Engineering Laboratory, 27.
English, Entrance, 97; courses in, 186; department of, 49, 55; pre-
paratory, 244. See also RHETORIC.
Entomology. See ZOOLOGY.
Enterance. See ADMISSION.
Examinations, entrance, 86, 40; term, 42.
Expenses, 239, 240.
Faculties, College, 47, 68, 88, 117.
Faculty, 15.
Fees, 239, 240.
Fellowships, 126, 219.
Fine Arts, 226. See also ART AND DESIGN, AND MUSIC.
French, for admission, 89; department of, 55; courses in, 168; in pre-
paratory school, 244.
Forestry. See HORTICULTURE.
Geology, courses in, 169; department of, 108.
German, for admission, 40; department of, 55; courses in, 171; in pre-
paratory school, 244.
Government, 44.
Graduate courses, agriculture, 132; architecture, 141; botany, 148; chem-
istry, 154; civil engineering, 158; economics, 163; electrical engineering,
165; English, 167; French, 168; geology, 171; Greek, 173; history, 175; Latin,
178; mathematics, 97, 180; mechanical engineering, 187; mechanics, 190;
pedagogy, 197; philosophy, 201; psychology, 208; zoology, 214.
Graduate School, 46, 128.
Greek, for admission, 89; courses in, 172; department of, 59, 66; in pre-
paratory school, 245.
Group System, 49, 52, 84, 86, 97, 101, 118.
Harris Banking Prize, 223
Hazleton Prize Medal, 222.
High Schools, accredited, 85, 280.
History of the University of Illinois, 28.
History, for admission, 37; courses in, 178; department of, 56; in pre-
paratory school, 245.
Horticulture, courses in, 175.
Hygiene, see PHYSICAL TRAINING.
Interscholastic Oratorical Contest, 224.
Italian, 57, 176.
Laboratories, 30, 73, 76, 81, 85, 86, 107, 108, 110, 112.
Latin, for admission, 39, 40; courses in, 177; department of, 57; in pre-
paratory school, 246.
Lecture Course, 237.
Lecturers, special, 19.
Library, 29.
Library Economy, course of lectures on, 145.
List of Students, 248.
Literary Societies, 224.
Literature and Arts, College of, 45, 47. See COLLEGE.
Loan Funds, Chicago Club, 224; class of 1895, 224.
Machinery Building, 27.
Master's Degrees, 217.
Mathematical Group, 97.
Mathematics, for admission, 36, 39, 40; courses in, 178; department of,
58, 97; in preparatory school, 243, 245.
Mechanical Engineering, 75, 188.
Mechanics, Theoretical and Applied, 82, 188.
Medicine, courses preparatory to, 106.
Meteorology, 190.
Military, 68, 190, 222, 234.
Mineralogy, 83, 108, 191. See also GEOLoGY.
Municipal and Sanitary Engineering, 78, 192.
Music, 58, 59, 198.
Library, 29.
Museum, 34.
Natural History Hall, 28.
Natural Science Group, 101.
Oratorical Prizes, 223.
Organization, 44.
Paleontology, 88, 169, 195, 171, 195. See also GEOLOGY.
Pharmacy, 92, 96, 197.
Pharmacy, School of, 46, 127.
Philosophy, 49, 59, 115, 199.
Physical Culture for Women, 59, 201, 229, 236.
Physical Training, 201, 226. See also PHYSICAL CULTURE FOR WOMEN.
Physies, for admission, 87; courses in, 202; department of, 80; in pre-
paratory school, 246.
Physiology, for admission, 88; courses in, 208; department of, 109; in pre-
paratory school, 247. See also HYGIENE.
Political Science, 50, 60, 204.
Preparatory School, 241; admission, 241; course of study, 242; faculty, 20, 241; regulations, 247.
Prizes, banking, 228; military, 222; or-
atorical, 228; holders of, 272
Psychology, 49, 61, 115, 206.
Registration, 42. See also GOVERNMENT.
In preparatory school, 247.
Requirements for Graduation, 52, 57, 69, 71, 74, 77, 79, 89, 98, 99, 103, 114, 121, 220 note.
Rhetoric, for admission, 56; courses in, 208; department of, 61. See also ENGLISH.
Romance Languages, 61. See also FRENCH, ITALIAN, SPANISH.
Sociology, 52. See also ANTHROPOLOGY.
Anthropometry, Economics.
Scholarships, 220; holders of, 271.
Science, College of, 45, 88. See College.
Social Advantages, 229.
Societies and Clubs, 224.
Spanish, 62, 209.
Specialized Courses, 49, 103, 220, note.
State Laboratory of Natural History, 21, 29, 80, 112.
Students, list of, 248; summary of, 270.
Summary of Students, 270.

Terms, 43.
Theoretical and Applied Mechanics. See Mechanics.
Theses. See Degrees and Requirements for Graduation.

Trustees, Board of, 11.
University Hall, 28.
Vacations, 48.
Veterinary Science, 209.
Winter School in Agriculture, 122.
Women, Advantages for, 227; physical culture for, 59, 201, 229, 236.

Zoology, for admission, 88; courses in, 210; department of, 111; in preparatory school, 247. See also Natural Science Group.